Mohamed S. El-Okaily, Ahmed M. A. El-Seidy, Eman H. Ismail, Rasha M. Allam, Ayman A. Saeed, Asim Bhaumik, Amany A. Mostafa
{"title":"基于 Cu/Fe@SBA-15 的用于肺癌治疗的催化管状纳米马达的纳米结构学","authors":"Mohamed S. El-Okaily, Ahmed M. A. El-Seidy, Eman H. Ismail, Rasha M. Allam, Ayman A. Saeed, Asim Bhaumik, Amany A. Mostafa","doi":"10.1557/s43578-024-01342-4","DOIUrl":null,"url":null,"abstract":"<p>Fabrications of nanomotors (NMs) are at the forefront of exploring the true potential of nanotechnology. Tubular nanomotors (TNMs) have been attracting huge interest recently. NMs based on 2D-hexagonal mesoporous silica (SBA-15) have been prepared through the surfactant-assisted sol–gel method. Copper and/or iron oxide nanoparticles have been impregnated in SBA-15 to form catalytic tubular nanomotors. Characterization has been investigated by XPS, XRD, HR-TEM, SEM–EDS, and BET. The electrochemical measurements were used to confirm the motion of the nanomotors. By increasing the loading of metal oxide nanoparticles, the motion decreases; this could be observed from the current loss. The anti-cancer potential of synthesized nanomotors against two cell lines (A549 and H460) of human lung carcinoma has been tested. Among all tested NMs, high-metal oxide-loaded materials containing CuO only as well as CuO and Fe<sub>2</sub>O<sub>3</sub> are potent and significant in apoptotic cell death for lung cancer treatment.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"11 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoarchitectonics of catalytic tubular nanomotors based on Cu/Fe@SBA-15 for lung cancer treatment\",\"authors\":\"Mohamed S. El-Okaily, Ahmed M. A. El-Seidy, Eman H. Ismail, Rasha M. Allam, Ayman A. Saeed, Asim Bhaumik, Amany A. Mostafa\",\"doi\":\"10.1557/s43578-024-01342-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fabrications of nanomotors (NMs) are at the forefront of exploring the true potential of nanotechnology. Tubular nanomotors (TNMs) have been attracting huge interest recently. NMs based on 2D-hexagonal mesoporous silica (SBA-15) have been prepared through the surfactant-assisted sol–gel method. Copper and/or iron oxide nanoparticles have been impregnated in SBA-15 to form catalytic tubular nanomotors. Characterization has been investigated by XPS, XRD, HR-TEM, SEM–EDS, and BET. The electrochemical measurements were used to confirm the motion of the nanomotors. By increasing the loading of metal oxide nanoparticles, the motion decreases; this could be observed from the current loss. The anti-cancer potential of synthesized nanomotors against two cell lines (A549 and H460) of human lung carcinoma has been tested. Among all tested NMs, high-metal oxide-loaded materials containing CuO only as well as CuO and Fe<sub>2</sub>O<sub>3</sub> are potent and significant in apoptotic cell death for lung cancer treatment.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01342-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01342-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanoarchitectonics of catalytic tubular nanomotors based on Cu/Fe@SBA-15 for lung cancer treatment
Fabrications of nanomotors (NMs) are at the forefront of exploring the true potential of nanotechnology. Tubular nanomotors (TNMs) have been attracting huge interest recently. NMs based on 2D-hexagonal mesoporous silica (SBA-15) have been prepared through the surfactant-assisted sol–gel method. Copper and/or iron oxide nanoparticles have been impregnated in SBA-15 to form catalytic tubular nanomotors. Characterization has been investigated by XPS, XRD, HR-TEM, SEM–EDS, and BET. The electrochemical measurements were used to confirm the motion of the nanomotors. By increasing the loading of metal oxide nanoparticles, the motion decreases; this could be observed from the current loss. The anti-cancer potential of synthesized nanomotors against two cell lines (A549 and H460) of human lung carcinoma has been tested. Among all tested NMs, high-metal oxide-loaded materials containing CuO only as well as CuO and Fe2O3 are potent and significant in apoptotic cell death for lung cancer treatment.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory