荧光标记光纤极化效应的表征与校正

IF 1.5 4区 工程技术 Q3 MICROSCOPY Journal of microscopy Pub Date : 2024-04-29 DOI:10.1111/jmi.13308
Nandini Aggarwal, Richard Marsh, Stefania Marcotti, Tanya J Shaw, Brian Stramer, Susan Cox, Siân Culley
{"title":"荧光标记光纤极化效应的表征与校正","authors":"Nandini Aggarwal, Richard Marsh, Stefania Marcotti, Tanya J Shaw, Brian Stramer, Susan Cox, Siân Culley","doi":"10.1111/jmi.13308","DOIUrl":null,"url":null,"abstract":"SummaryMany biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity. This can bias automated analysis of fibre alignment and mask the true underlying structural organisation. We present a method for quantifying and correcting these polarisation effects without requiring polarisation‐resolved microscopy and demonstrate its efficacy when applied to images of fluorescently labelled collagen gels, allowing for more reliable characterisation of fibre microarchitecture.","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"90 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterisation and correction of polarisation effects in fluorescently labelled fibres\",\"authors\":\"Nandini Aggarwal, Richard Marsh, Stefania Marcotti, Tanya J Shaw, Brian Stramer, Susan Cox, Siân Culley\",\"doi\":\"10.1111/jmi.13308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryMany biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity. This can bias automated analysis of fibre alignment and mask the true underlying structural organisation. We present a method for quantifying and correcting these polarisation effects without requiring polarisation‐resolved microscopy and demonstrate its efficacy when applied to images of fluorescently labelled collagen gels, allowing for more reliable characterisation of fibre microarchitecture.\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13308\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13308","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

摘要许多生物结构都以纤维和细丝的形式存在,对纤维组织的定量分析对于了解它们在正常生理条件和疾病中的功能都非常重要。为了使这些结构可视化,可以对纤维进行荧光标记和成像,并采用专门的图像分析方法来量化纤维排列的程度和强度。在这里,我们展示了荧光标记的纤维可显示极化发射,这种效应的强度因结构和荧光团特性而异。这会使纤维排列的自动分析产生偏差,并掩盖真实的潜在结构组织。我们提出了一种无需偏振分辨显微镜即可量化和校正这些偏振效应的方法,并展示了该方法在应用于荧光标记胶原凝胶图像时的功效,使纤维微观结构的表征更加可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterisation and correction of polarisation effects in fluorescently labelled fibres
SummaryMany biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity. This can bias automated analysis of fibre alignment and mask the true underlying structural organisation. We present a method for quantifying and correcting these polarisation effects without requiring polarisation‐resolved microscopy and demonstrate its efficacy when applied to images of fluorescently labelled collagen gels, allowing for more reliable characterisation of fibre microarchitecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
期刊最新文献
Towards affordable biomedical imaging: Recent advances in low-cost, high-resolution optoacoustic microscopy. TOC - Issue Information A comparison of super-resolution microscopy techniques for imaging tightly packed microcolonies of an obligate intracellular bacterium. Mechanical properties of bone cells studied by atomic force microscopy. Multicamera simultaneous total internal reflection and interference reflection microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1