Romain Pintore, John R. Hutchinson, Peter J. Bishop, Henry P. Tsai, Alexandra Houssaye
{"title":"巨型非鸟类兽脚类恐龙股骨形态的演变","authors":"Romain Pintore, John R. Hutchinson, Peter J. Bishop, Henry P. Tsai, Alexandra Houssaye","doi":"10.1017/pab.2024.6","DOIUrl":null,"url":null,"abstract":"Theropods are obligate bipedal dinosaurs that appeared 230 Ma and are still extant as birds. Their history is characterized by extreme variations in body mass, with gigantism evolving convergently between many lineages. However, no quantification of hindlimb functional morphology has shown whether these body mass increases led to similar specializations between distinct lineages. Here we studied femoral shape variation across 41 species of theropods (<jats:italic>n</jats:italic> = 68 specimens) using a high-density 3D geometric morphometric approach. We demonstrated that the heaviest theropods evolved wider epiphyses and a more distally located fourth trochanter, as previously demonstrated in early archosaurs, along with an upturned femoral head and a mediodistal crest that extended proximally along the shaft. Phylogenetically informed analyses highlighted that these traits evolved convergently within six major theropod lineages, regardless of their maximum body mass. Conversely, the most gracile femora were distinct from the rest of the dataset, which we interpret as a femoral specialization to “miniaturization” evolving close to Avialae (bird lineage). Our results support a gradual evolution of known “avian” features, such as the fusion between lesser and greater trochanters and a reduction of the epiphyseal offset, independent from body mass variations, which may relate to a more “avian” type of locomotion (more knee than hip driven). The distinction between body mass variations and a more “avian” locomotion is represented by a decoupling in the mediodistal crest morphology, whose biomechanical nature should be studied to better understand the importance of its functional role in gigantism, miniaturization, and higher parasagittal abilities.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolution of femoral morphology in giant non-avian theropod dinosaurs\",\"authors\":\"Romain Pintore, John R. Hutchinson, Peter J. Bishop, Henry P. Tsai, Alexandra Houssaye\",\"doi\":\"10.1017/pab.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theropods are obligate bipedal dinosaurs that appeared 230 Ma and are still extant as birds. Their history is characterized by extreme variations in body mass, with gigantism evolving convergently between many lineages. However, no quantification of hindlimb functional morphology has shown whether these body mass increases led to similar specializations between distinct lineages. Here we studied femoral shape variation across 41 species of theropods (<jats:italic>n</jats:italic> = 68 specimens) using a high-density 3D geometric morphometric approach. We demonstrated that the heaviest theropods evolved wider epiphyses and a more distally located fourth trochanter, as previously demonstrated in early archosaurs, along with an upturned femoral head and a mediodistal crest that extended proximally along the shaft. Phylogenetically informed analyses highlighted that these traits evolved convergently within six major theropod lineages, regardless of their maximum body mass. Conversely, the most gracile femora were distinct from the rest of the dataset, which we interpret as a femoral specialization to “miniaturization” evolving close to Avialae (bird lineage). Our results support a gradual evolution of known “avian” features, such as the fusion between lesser and greater trochanters and a reduction of the epiphyseal offset, independent from body mass variations, which may relate to a more “avian” type of locomotion (more knee than hip driven). The distinction between body mass variations and a more “avian” locomotion is represented by a decoupling in the mediodistal crest morphology, whose biomechanical nature should be studied to better understand the importance of its functional role in gigantism, miniaturization, and higher parasagittal abilities.\",\"PeriodicalId\":54646,\"journal\":{\"name\":\"Paleobiology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/pab.2024.6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2024.6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
The evolution of femoral morphology in giant non-avian theropod dinosaurs
Theropods are obligate bipedal dinosaurs that appeared 230 Ma and are still extant as birds. Their history is characterized by extreme variations in body mass, with gigantism evolving convergently between many lineages. However, no quantification of hindlimb functional morphology has shown whether these body mass increases led to similar specializations between distinct lineages. Here we studied femoral shape variation across 41 species of theropods (n = 68 specimens) using a high-density 3D geometric morphometric approach. We demonstrated that the heaviest theropods evolved wider epiphyses and a more distally located fourth trochanter, as previously demonstrated in early archosaurs, along with an upturned femoral head and a mediodistal crest that extended proximally along the shaft. Phylogenetically informed analyses highlighted that these traits evolved convergently within six major theropod lineages, regardless of their maximum body mass. Conversely, the most gracile femora were distinct from the rest of the dataset, which we interpret as a femoral specialization to “miniaturization” evolving close to Avialae (bird lineage). Our results support a gradual evolution of known “avian” features, such as the fusion between lesser and greater trochanters and a reduction of the epiphyseal offset, independent from body mass variations, which may relate to a more “avian” type of locomotion (more knee than hip driven). The distinction between body mass variations and a more “avian” locomotion is represented by a decoupling in the mediodistal crest morphology, whose biomechanical nature should be studied to better understand the importance of its functional role in gigantism, miniaturization, and higher parasagittal abilities.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.