Fawad Ali, Mian A. R. Arif, Arif Ali, Muhammad A. Nadeem, Emre Aksoy, Allah Bakhsh, Shahid U. Khan, Cemal Kurt, Dilek Tekdal, Muhammad K. Ilyas, Amjad Hameed, Yong S. Chung, Faheem S. Baloch
{"title":"全基因组关联研究发现不同氮处理条件下红花(Carthamus tinctorius)脂肪酸和支链氨基酸代谢及组蛋白修饰的相关基因位点","authors":"Fawad Ali, Mian A. R. Arif, Arif Ali, Muhammad A. Nadeem, Emre Aksoy, Allah Bakhsh, Shahid U. Khan, Cemal Kurt, Dilek Tekdal, Muhammad K. Ilyas, Amjad Hameed, Yong S. Chung, Faheem S. Baloch","doi":"10.1071/fp23310","DOIUrl":null,"url":null,"abstract":"<p>Effective identification and usage of genetic variation are prerequisites for developing nutrient-efficient cultivars. A collection of 94 safflower (<i>Carthamus tinctorius</i>) genotypes (G) was investigated for important morphological and photosynthetic traits at four nitrogen (N) treatments. We found significant variation for all the studied traits except chlorophyll <i>b</i> (chl <i>b</i>) among safflower genotypes, nitrogen treatments and G × N interaction. The examined traits showed a 2.82–50.00% increase in response to N application. Biological yield (BY) reflected a significantly positive correlation with fresh shoot weight (FSW), root length (RL), fresh root weight (FRW) and number of leaves (NOL), while a significantly positive correlation was also observed among carotenoids (C), chlorophyll <i>a</i> (chl <i>a</i>), chl <i>b</i> and total chlorophyll content (CT) under all treatments. Superior genotypes with respect to plant height (PH), FSW, NOL, RL, FRW and BY were clustered into Group 3, while genotypes with better mean performance regarding chl <i>a</i>, chl <i>b</i> C and CT were clustered into Group 2 as observed in principal component analysis. The identified eight best-performing genotypes could be useful to develop improved nitrogen efficient cultivars. Genome-wide association analysis resulted in 32 marker-trait associations (MTAs) under four treatments. Markers namely <i>DArT-45481731</i>, <i>DArT-17812864</i>, <i>DArT-15670279</i> and <i>DArT-45482737</i> were found consistent. Protein–protein interaction networks of loci associated with MTAs were related to fatty acid and branched-chain amino acid metabolism and histone modifications.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"161 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide association studies identifies genetic loci related to fatty acid and branched-chain amino acid metabolism and histone modifications under varying nitrogen treatments in safflower (Carthamus tinctorius)\",\"authors\":\"Fawad Ali, Mian A. R. Arif, Arif Ali, Muhammad A. Nadeem, Emre Aksoy, Allah Bakhsh, Shahid U. Khan, Cemal Kurt, Dilek Tekdal, Muhammad K. Ilyas, Amjad Hameed, Yong S. Chung, Faheem S. Baloch\",\"doi\":\"10.1071/fp23310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effective identification and usage of genetic variation are prerequisites for developing nutrient-efficient cultivars. A collection of 94 safflower (<i>Carthamus tinctorius</i>) genotypes (G) was investigated for important morphological and photosynthetic traits at four nitrogen (N) treatments. We found significant variation for all the studied traits except chlorophyll <i>b</i> (chl <i>b</i>) among safflower genotypes, nitrogen treatments and G × N interaction. The examined traits showed a 2.82–50.00% increase in response to N application. Biological yield (BY) reflected a significantly positive correlation with fresh shoot weight (FSW), root length (RL), fresh root weight (FRW) and number of leaves (NOL), while a significantly positive correlation was also observed among carotenoids (C), chlorophyll <i>a</i> (chl <i>a</i>), chl <i>b</i> and total chlorophyll content (CT) under all treatments. Superior genotypes with respect to plant height (PH), FSW, NOL, RL, FRW and BY were clustered into Group 3, while genotypes with better mean performance regarding chl <i>a</i>, chl <i>b</i> C and CT were clustered into Group 2 as observed in principal component analysis. The identified eight best-performing genotypes could be useful to develop improved nitrogen efficient cultivars. Genome-wide association analysis resulted in 32 marker-trait associations (MTAs) under four treatments. Markers namely <i>DArT-45481731</i>, <i>DArT-17812864</i>, <i>DArT-15670279</i> and <i>DArT-45482737</i> were found consistent. Protein–protein interaction networks of loci associated with MTAs were related to fatty acid and branched-chain amino acid metabolism and histone modifications.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/fp23310\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/fp23310","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
有效识别和利用遗传变异是开发营养高效栽培品种的先决条件。我们研究了 94 个红花(Carthamus tinctorius)基因型(G)在四种氮(N)处理下的重要形态和光合性状。我们发现,除叶绿素 b(chl b)外,所研究的所有性状在红花基因型、氮处理和 G × N 交互作用之间都存在明显差异。所研究的性状对施氮的反应增加了 2.82-50.00%。生物产量(BY)与鲜枝重(FSW)、根长(RL)、鲜根重(FRW)和叶片数(NOL)呈显著正相关,而在所有处理下,类胡萝卜素(C)、叶绿素 a(chl a)、叶绿素 b 和总叶绿素含量(CT)也呈显著正相关。根据主成分分析,在株高(PH)、FSW、NOL、RL、FRW 和 BY 方面表现优异的基因型被归入第 3 组,而在叶绿素 a、叶绿素 b C 和 CT 方面平均表现较好的基因型被归入第 2 组。确定的 8 个表现最好的基因型可用于改良氮素效率高的栽培品种。全基因组关联分析在四个处理下产生了 32 个标记-性状关联(MTAs)。发现DArT-45481731、DArT-17812864、DArT-15670279和DArT-45482737等标记具有一致性。与 MTAs 相关的基因座的蛋白质-蛋白质相互作用网络与脂肪酸和支链氨基酸代谢以及组蛋白修饰有关。
Genome-wide association studies identifies genetic loci related to fatty acid and branched-chain amino acid metabolism and histone modifications under varying nitrogen treatments in safflower (Carthamus tinctorius)
Effective identification and usage of genetic variation are prerequisites for developing nutrient-efficient cultivars. A collection of 94 safflower (Carthamus tinctorius) genotypes (G) was investigated for important morphological and photosynthetic traits at four nitrogen (N) treatments. We found significant variation for all the studied traits except chlorophyll b (chl b) among safflower genotypes, nitrogen treatments and G × N interaction. The examined traits showed a 2.82–50.00% increase in response to N application. Biological yield (BY) reflected a significantly positive correlation with fresh shoot weight (FSW), root length (RL), fresh root weight (FRW) and number of leaves (NOL), while a significantly positive correlation was also observed among carotenoids (C), chlorophyll a (chl a), chl b and total chlorophyll content (CT) under all treatments. Superior genotypes with respect to plant height (PH), FSW, NOL, RL, FRW and BY were clustered into Group 3, while genotypes with better mean performance regarding chl a, chl b C and CT were clustered into Group 2 as observed in principal component analysis. The identified eight best-performing genotypes could be useful to develop improved nitrogen efficient cultivars. Genome-wide association analysis resulted in 32 marker-trait associations (MTAs) under four treatments. Markers namely DArT-45481731, DArT-17812864, DArT-15670279 and DArT-45482737 were found consistent. Protein–protein interaction networks of loci associated with MTAs were related to fatty acid and branched-chain amino acid metabolism and histone modifications.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.