表面基团对熔盐合成 Ti3C2Tx 在温和水性电解质中电化学特性的影响

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-05-01 DOI:10.1002/batt.202400153
Bin Guan, Guoliang Ma, Zifeng Lin
{"title":"表面基团对熔盐合成 Ti3C2Tx 在温和水性电解质中电化学特性的影响","authors":"Bin Guan, Guoliang Ma, Zifeng Lin","doi":"10.1002/batt.202400153","DOIUrl":null,"url":null,"abstract":"MXene, notable for its excellent electrical conductivity and tunable surface groups, has garnered widespread attention in the field of electrochemical energy storage. Here, Ti3C2Tx MXene was synthesized by a Lewis acid molten salt‐shielded synthesis (MS3). The surface groups (‐Cl, ‐O) were modified by washing Ti3C2Tx samples with various solutions (deionized water, 0.5 M hydrochloric acid (HCl), 0.5 M ammonium persulfate solution (APS)) and/or thermal treatments under an argon atmosphere at 300 °C, 500 °C, and 700 °C. It is shown that deionized water and HCl solution washing have minimal impact on the surface groups, while APS washing can increase the content of ‐O surface group. Conversely, thermal treatment may remove the ‐O. Electrochemical charge storage behavior of these Ti3C2Tx variants were further investigated in a 1 M acetate electrolyte buffered at pH=5.0. It is indicated that the ‐Cl surface group is electrochemically inert, whereas the ‐O may significantly improve the charge storage performance. Ti3C2Tx with high ‐O content delivered an impressive maximum capacity of 155 C g‐1. This research underscores the crucial role of surface groups on the electrochemical performance of Ti3C2Tx in mild aqueous electrolytes, offering valuable insights for future modifications and applications of Ti3C2Tx in energy storage technologies.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Surface Groups on Electrochemical Properties of Molten Salt Synthesized Ti3C2Tx in Mild Aqueous Electrolytes\",\"authors\":\"Bin Guan, Guoliang Ma, Zifeng Lin\",\"doi\":\"10.1002/batt.202400153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MXene, notable for its excellent electrical conductivity and tunable surface groups, has garnered widespread attention in the field of electrochemical energy storage. Here, Ti3C2Tx MXene was synthesized by a Lewis acid molten salt‐shielded synthesis (MS3). The surface groups (‐Cl, ‐O) were modified by washing Ti3C2Tx samples with various solutions (deionized water, 0.5 M hydrochloric acid (HCl), 0.5 M ammonium persulfate solution (APS)) and/or thermal treatments under an argon atmosphere at 300 °C, 500 °C, and 700 °C. It is shown that deionized water and HCl solution washing have minimal impact on the surface groups, while APS washing can increase the content of ‐O surface group. Conversely, thermal treatment may remove the ‐O. Electrochemical charge storage behavior of these Ti3C2Tx variants were further investigated in a 1 M acetate electrolyte buffered at pH=5.0. It is indicated that the ‐Cl surface group is electrochemically inert, whereas the ‐O may significantly improve the charge storage performance. Ti3C2Tx with high ‐O content delivered an impressive maximum capacity of 155 C g‐1. This research underscores the crucial role of surface groups on the electrochemical performance of Ti3C2Tx in mild aqueous electrolytes, offering valuable insights for future modifications and applications of Ti3C2Tx in energy storage technologies.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400153\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400153","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

MXene 因其出色的导电性和可调的表面基团而在电化学储能领域受到广泛关注。本文采用路易斯酸熔盐屏蔽合成法(MS3)合成了 Ti3C2Tx MXene。通过用不同溶液(去离子水、0.5 M 盐酸 (HCl)、0.5 M 过硫酸铵溶液 (APS))和/或在 300 ℃、500 ℃ 和 700 ℃ 的氩气环境下进行热处理,对 Ti3C2Tx 样品的表面基团(-Cl、-O)进行了修饰。结果表明,去离子水和盐酸溶液清洗对表面基团的影响很小,而 APS 清洗则会增加 -O 表面基团的含量。相反,热处理可能会去除 -O。在 pH=5.0 的 1 M 醋酸缓冲电解液中,进一步研究了这些 Ti3C2Tx 变体的电化学电荷存储行为。结果表明,-Cl 表面基团具有电化学惰性,而 -O 则可显著提高电荷储存性能。高 -O 含量的 Ti3C2Tx 的最大容量为 155 C g-1,令人印象深刻。这项研究强调了表面基团对 Ti3C2Tx 在温和水性电解质中的电化学性能所起的关键作用,为未来对 Ti3C2Tx 进行改性并将其应用于储能技术提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Surface Groups on Electrochemical Properties of Molten Salt Synthesized Ti3C2Tx in Mild Aqueous Electrolytes
MXene, notable for its excellent electrical conductivity and tunable surface groups, has garnered widespread attention in the field of electrochemical energy storage. Here, Ti3C2Tx MXene was synthesized by a Lewis acid molten salt‐shielded synthesis (MS3). The surface groups (‐Cl, ‐O) were modified by washing Ti3C2Tx samples with various solutions (deionized water, 0.5 M hydrochloric acid (HCl), 0.5 M ammonium persulfate solution (APS)) and/or thermal treatments under an argon atmosphere at 300 °C, 500 °C, and 700 °C. It is shown that deionized water and HCl solution washing have minimal impact on the surface groups, while APS washing can increase the content of ‐O surface group. Conversely, thermal treatment may remove the ‐O. Electrochemical charge storage behavior of these Ti3C2Tx variants were further investigated in a 1 M acetate electrolyte buffered at pH=5.0. It is indicated that the ‐Cl surface group is electrochemically inert, whereas the ‐O may significantly improve the charge storage performance. Ti3C2Tx with high ‐O content delivered an impressive maximum capacity of 155 C g‐1. This research underscores the crucial role of surface groups on the electrochemical performance of Ti3C2Tx in mild aqueous electrolytes, offering valuable insights for future modifications and applications of Ti3C2Tx in energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution Flame-Retardant Polymer Electrolyte for Sodium-Ion Batteries On the Selection of the Current Collector for Water Processed Activated Carbon Electrodes for their Application in Electrochemical Capacitors Statistical Analysis of Solid Electrolyte Interface Formation: Correlation of Gas Composition, Electrochemical Data and Performance Effect of Synthesis Conditions on the Composition, Local Structure and Electrochemical Behavior of (Cr,Fe,Mn,Co,Ni)3O4 Anode Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1