Jessica Gosling-Goldsmith, Sarah Elizabeth Antos, Luis Miguel Triveno, Adam R Benjamin, Chaofeng Wang
{"title":"航空-地面数据融合用于精细探测城市线索","authors":"Jessica Gosling-Goldsmith, Sarah Elizabeth Antos, Luis Miguel Triveno, Adam R Benjamin, Chaofeng Wang","doi":"10.1177/23998083241247870","DOIUrl":null,"url":null,"abstract":"Those who work in the design, development, and management of cities are often limited by the scarcity of data. Particularly in the Global South, urban databases may be insufficient, out of date, or simply not available. However, digital technology is making it possible to fill gaps and build substantial datasets using “urban clues,” or attributes, gathered in high-resolution imagery by sky- and street-based cameras. Aided by machine learning, it is possible to detect specific building characteristics (purpose, condition, size, material, and construction)—yielding an array of geolocated details about the built environment. The resulting composite view can be made available, as we have done, in an open-source portal for use in urban management. The insights gained in this way may help address common urban management challenges, such as locating homes vulnerable to hazards such as flooding or earthquakes, identifying urban sprawl and informal housing, prioritizing infrastructure investments, and guiding public program support. This approach has been applied in Colombia, Guatemala, Indonesia, Mexico, Paraguay, Peru, St Lucia, and St Maarten.","PeriodicalId":11863,"journal":{"name":"Environment and Planning B: Urban Analytics and City Science","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerial-terrestrial data fusion for fine-grained detection of urban clues\",\"authors\":\"Jessica Gosling-Goldsmith, Sarah Elizabeth Antos, Luis Miguel Triveno, Adam R Benjamin, Chaofeng Wang\",\"doi\":\"10.1177/23998083241247870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Those who work in the design, development, and management of cities are often limited by the scarcity of data. Particularly in the Global South, urban databases may be insufficient, out of date, or simply not available. However, digital technology is making it possible to fill gaps and build substantial datasets using “urban clues,” or attributes, gathered in high-resolution imagery by sky- and street-based cameras. Aided by machine learning, it is possible to detect specific building characteristics (purpose, condition, size, material, and construction)—yielding an array of geolocated details about the built environment. The resulting composite view can be made available, as we have done, in an open-source portal for use in urban management. The insights gained in this way may help address common urban management challenges, such as locating homes vulnerable to hazards such as flooding or earthquakes, identifying urban sprawl and informal housing, prioritizing infrastructure investments, and guiding public program support. This approach has been applied in Colombia, Guatemala, Indonesia, Mexico, Paraguay, Peru, St Lucia, and St Maarten.\",\"PeriodicalId\":11863,\"journal\":{\"name\":\"Environment and Planning B: Urban Analytics and City Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Planning B: Urban Analytics and City Science\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/23998083241247870\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Planning B: Urban Analytics and City Science","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/23998083241247870","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Aerial-terrestrial data fusion for fine-grained detection of urban clues
Those who work in the design, development, and management of cities are often limited by the scarcity of data. Particularly in the Global South, urban databases may be insufficient, out of date, or simply not available. However, digital technology is making it possible to fill gaps and build substantial datasets using “urban clues,” or attributes, gathered in high-resolution imagery by sky- and street-based cameras. Aided by machine learning, it is possible to detect specific building characteristics (purpose, condition, size, material, and construction)—yielding an array of geolocated details about the built environment. The resulting composite view can be made available, as we have done, in an open-source portal for use in urban management. The insights gained in this way may help address common urban management challenges, such as locating homes vulnerable to hazards such as flooding or earthquakes, identifying urban sprawl and informal housing, prioritizing infrastructure investments, and guiding public program support. This approach has been applied in Colombia, Guatemala, Indonesia, Mexico, Paraguay, Peru, St Lucia, and St Maarten.