Triyono, Wega Trisunaryanti, Serisya Inier Aksanti, Jason Purbonegoro
{"title":"从辣木树叶灰烬中提取的基础催化剂在低级巴厘岛马拉帕里油生物柴油转化中的高性能表现","authors":"Triyono, Wega Trisunaryanti, Serisya Inier Aksanti, Jason Purbonegoro","doi":"10.1007/s11144-024-02637-7","DOIUrl":null,"url":null,"abstract":"<div><p>This research was aimed at developing a base catalyst from the ash of moringa leaves that has high-performance biodiesel production. The moringa leaves were washed, dried, and then pounded into powder ash. Three temperature variations were used to calcinate the moringa leaves ash: 700 °C (MA-700), 800 °C (MA-800), and 900 °C (MA-900). Low-grade Bali Malapari oil (LMO) was degummed by heating and then treated with an 85% H<sub>3</sub>PO<sub>4</sub> solution, which was referred to as DMO. The DMO oil was esterified using methanol and concentrated H<sub>2</sub>SO<sub>4</sub> (EDMO). Because MA-900 contained the highest concentration of CaO, it was chosen to serve as the catalyst. The MA-900 was used in the production of biodiesel under the following conditions: temperature of reaction (55, 60, and 65 °C); oil-to-methanol mole ratio (1:3, 1:6, and 1:9); catalyst-to-oil weight ratio variables (3 wt%, 6 wt%, and 9 wt%); and reaction times (60, 90, 120, and 150 min). The biodiesel products were analyzed using FTIR and GC–MS. The best-performing conditions were conducted for catalyst usability test for three-run cycles. The highest biodiesel yield was achieved using a 1:6 oil:methanol mole ratio and a 3% catalyst/oil weight ratio at 60 °C reaction temperature, which lasted for 120 min and resulted in a biodiesel yield of 87.2wt% with 100% selectivity. The usability test performed on the MA-900 catalyst resulted in a biodiesel yield that was 87.2%, 86.4%, and 84.8% after three-run cycles.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 4","pages":"2037 - 2063"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance of a base catalyst from Moringa leaves ash for biodiesel conversion of low-grade Bali Malapari oil\",\"authors\":\"Triyono, Wega Trisunaryanti, Serisya Inier Aksanti, Jason Purbonegoro\",\"doi\":\"10.1007/s11144-024-02637-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research was aimed at developing a base catalyst from the ash of moringa leaves that has high-performance biodiesel production. The moringa leaves were washed, dried, and then pounded into powder ash. Three temperature variations were used to calcinate the moringa leaves ash: 700 °C (MA-700), 800 °C (MA-800), and 900 °C (MA-900). Low-grade Bali Malapari oil (LMO) was degummed by heating and then treated with an 85% H<sub>3</sub>PO<sub>4</sub> solution, which was referred to as DMO. The DMO oil was esterified using methanol and concentrated H<sub>2</sub>SO<sub>4</sub> (EDMO). Because MA-900 contained the highest concentration of CaO, it was chosen to serve as the catalyst. The MA-900 was used in the production of biodiesel under the following conditions: temperature of reaction (55, 60, and 65 °C); oil-to-methanol mole ratio (1:3, 1:6, and 1:9); catalyst-to-oil weight ratio variables (3 wt%, 6 wt%, and 9 wt%); and reaction times (60, 90, 120, and 150 min). The biodiesel products were analyzed using FTIR and GC–MS. The best-performing conditions were conducted for catalyst usability test for three-run cycles. The highest biodiesel yield was achieved using a 1:6 oil:methanol mole ratio and a 3% catalyst/oil weight ratio at 60 °C reaction temperature, which lasted for 120 min and resulted in a biodiesel yield of 87.2wt% with 100% selectivity. The usability test performed on the MA-900 catalyst resulted in a biodiesel yield that was 87.2%, 86.4%, and 84.8% after three-run cycles.</p></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"137 4\",\"pages\":\"2037 - 2063\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-024-02637-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02637-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High performance of a base catalyst from Moringa leaves ash for biodiesel conversion of low-grade Bali Malapari oil
This research was aimed at developing a base catalyst from the ash of moringa leaves that has high-performance biodiesel production. The moringa leaves were washed, dried, and then pounded into powder ash. Three temperature variations were used to calcinate the moringa leaves ash: 700 °C (MA-700), 800 °C (MA-800), and 900 °C (MA-900). Low-grade Bali Malapari oil (LMO) was degummed by heating and then treated with an 85% H3PO4 solution, which was referred to as DMO. The DMO oil was esterified using methanol and concentrated H2SO4 (EDMO). Because MA-900 contained the highest concentration of CaO, it was chosen to serve as the catalyst. The MA-900 was used in the production of biodiesel under the following conditions: temperature of reaction (55, 60, and 65 °C); oil-to-methanol mole ratio (1:3, 1:6, and 1:9); catalyst-to-oil weight ratio variables (3 wt%, 6 wt%, and 9 wt%); and reaction times (60, 90, 120, and 150 min). The biodiesel products were analyzed using FTIR and GC–MS. The best-performing conditions were conducted for catalyst usability test for three-run cycles. The highest biodiesel yield was achieved using a 1:6 oil:methanol mole ratio and a 3% catalyst/oil weight ratio at 60 °C reaction temperature, which lasted for 120 min and resulted in a biodiesel yield of 87.2wt% with 100% selectivity. The usability test performed on the MA-900 catalyst resulted in a biodiesel yield that was 87.2%, 86.4%, and 84.8% after three-run cycles.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.