晶粒尺寸对 Li7-3xLa3Zr2AlxO12 固体电解质电化学性能的影响

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-05-02 DOI:10.1002/batt.202300370
Miriam Botros, Jesus Gonzalez-Julian, Torsten Scherer, Radian Popescu, Christoph Loho, Askar Kilmametov, Oliver Clemens, Horst Hahn
{"title":"晶粒尺寸对 Li7-3xLa3Zr2AlxO12 固体电解质电化学性能的影响","authors":"Miriam Botros, Jesus Gonzalez-Julian, Torsten Scherer, Radian Popescu, Christoph Loho, Askar Kilmametov, Oliver Clemens, Horst Hahn","doi":"10.1002/batt.202300370","DOIUrl":null,"url":null,"abstract":"Contemporary Li‐ion batteries are facing substantial challenges like safety and limited energy density. The development of all‐solid‐state battery cells mitigates safety hazards and allows the use of Li‐metal anodes increasing energy density. Garnet‐type solid electrolytes can be vital to achieving an all‐solid‐state cell and an understanding of the influence of its microstructure on the electrochemical performance is crucial for material and cell design. In this work the influence of grain size on the Li‐ion conductivity of Li7‐3xLa3Zr2AlxO12 (x = 0.22) is presented. The synthesis and processing procedure allows changing the ceramic grain size, while maintaining the same synthesis parameters, eliminating influences of the synthesis on grain boundary composition. Field assisted sintering technology is a powerful method to obtain dense, fine‐grained ceramics with an optimal grain size of 2‐3 µm, where the conductivity is double that of the counterpart (0.7 µm). A total Li‐ion conductivity of 0.43 mS cm‑1 and an activation energy of 0.36 eV were achieved. The oxide‐based all‐solid‐state battery cell combining the garnet‐type electrolyte, a Li‐metal anode and a thin‐film LiCoO2 cathode was assembled and cycled at room temperature for 90 hours. This represents a proof of concept, for the application of oxide‐based electrolytes at ambient temperatures.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of grain size on the electrochemical performance of Li7‑3xLa3Zr2AlxO12 solid electrolyte\",\"authors\":\"Miriam Botros, Jesus Gonzalez-Julian, Torsten Scherer, Radian Popescu, Christoph Loho, Askar Kilmametov, Oliver Clemens, Horst Hahn\",\"doi\":\"10.1002/batt.202300370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contemporary Li‐ion batteries are facing substantial challenges like safety and limited energy density. The development of all‐solid‐state battery cells mitigates safety hazards and allows the use of Li‐metal anodes increasing energy density. Garnet‐type solid electrolytes can be vital to achieving an all‐solid‐state cell and an understanding of the influence of its microstructure on the electrochemical performance is crucial for material and cell design. In this work the influence of grain size on the Li‐ion conductivity of Li7‐3xLa3Zr2AlxO12 (x = 0.22) is presented. The synthesis and processing procedure allows changing the ceramic grain size, while maintaining the same synthesis parameters, eliminating influences of the synthesis on grain boundary composition. Field assisted sintering technology is a powerful method to obtain dense, fine‐grained ceramics with an optimal grain size of 2‐3 µm, where the conductivity is double that of the counterpart (0.7 µm). A total Li‐ion conductivity of 0.43 mS cm‑1 and an activation energy of 0.36 eV were achieved. The oxide‐based all‐solid‐state battery cell combining the garnet‐type electrolyte, a Li‐metal anode and a thin‐film LiCoO2 cathode was assembled and cycled at room temperature for 90 hours. This represents a proof of concept, for the application of oxide‐based electrolytes at ambient temperatures.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202300370\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202300370","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

当代锂离子电池面临着安全和能量密度有限等重大挑战。开发全固态电池可降低安全隐患,并允许使用锂金属阳极提高能量密度。石榴石型固体电解质对实现全固态电池至关重要,而了解其微观结构对电化学性能的影响对材料和电池设计至关重要。本研究介绍了晶粒尺寸对 Li7-3xLa3Zr2AlxO12 (x = 0.22) 锂离子电导率的影响。合成和加工程序允许在保持相同合成参数的情况下改变陶瓷晶粒大小,从而消除了合成对晶界成分的影响。场辅助烧结技术是一种获得致密细粒陶瓷的有效方法,其最佳晶粒大小为 2-3 微米,导电率是同类陶瓷(0.7 微米)的两倍。锂离子总电导率为 0.43 mS cm-1,活化能为 0.36 eV。结合石榴石型电解质、锂金属阳极和薄膜钴酸锂阴极的氧化物全固态电池在室温下组装并循环使用了 90 小时。这证明了在常温下应用氧化物电解质的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of grain size on the electrochemical performance of Li7‑3xLa3Zr2AlxO12 solid electrolyte
Contemporary Li‐ion batteries are facing substantial challenges like safety and limited energy density. The development of all‐solid‐state battery cells mitigates safety hazards and allows the use of Li‐metal anodes increasing energy density. Garnet‐type solid electrolytes can be vital to achieving an all‐solid‐state cell and an understanding of the influence of its microstructure on the electrochemical performance is crucial for material and cell design. In this work the influence of grain size on the Li‐ion conductivity of Li7‐3xLa3Zr2AlxO12 (x = 0.22) is presented. The synthesis and processing procedure allows changing the ceramic grain size, while maintaining the same synthesis parameters, eliminating influences of the synthesis on grain boundary composition. Field assisted sintering technology is a powerful method to obtain dense, fine‐grained ceramics with an optimal grain size of 2‐3 µm, where the conductivity is double that of the counterpart (0.7 µm). A total Li‐ion conductivity of 0.43 mS cm‑1 and an activation energy of 0.36 eV were achieved. The oxide‐based all‐solid‐state battery cell combining the garnet‐type electrolyte, a Li‐metal anode and a thin‐film LiCoO2 cathode was assembled and cycled at room temperature for 90 hours. This represents a proof of concept, for the application of oxide‐based electrolytes at ambient temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution Flame-Retardant Polymer Electrolyte for Sodium-Ion Batteries On the Selection of the Current Collector for Water Processed Activated Carbon Electrodes for their Application in Electrochemical Capacitors Statistical Analysis of Solid Electrolyte Interface Formation: Correlation of Gas Composition, Electrochemical Data and Performance Effect of Synthesis Conditions on the Composition, Local Structure and Electrochemical Behavior of (Cr,Fe,Mn,Co,Ni)3O4 Anode Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1