Erika Gasperikova, Craig Ulrich, Olufemi A. Omitaomu, Patrick Dobson, Yingqi Zhang
{"title":"矿区地热资源直接供暖多标准筛选评估","authors":"Erika Gasperikova, Craig Ulrich, Olufemi A. Omitaomu, Patrick Dobson, Yingqi Zhang","doi":"10.1186/s40517-024-00289-3","DOIUrl":null,"url":null,"abstract":"<div><p>Direct use of geothermal energy is the oldest and most versatile form of utilizing geothermal energy. In the last decade, this utilization has significantly increased, especially with the installation of geothermal (ground-source) heat pumps. Many current and inactive mine land sites across the U.S. could be redeveloped with clean energy technologies such as direct use geothermal, which would revitalize former mining communities, help with reducing greenhouse gas emissions, and accelerate the transition to a clean energy economy. We present a multicriteria screening framework to evaluate various aspects of direct-use geothermal projects on mine lands. The criteria are divided into three categories: (1) technical potential, (2) demand and benefits, and (3) regulatory and permitting. We demonstrate the framework using publicly available data on a national scale (continental U.S.). Then, using an example of abandoned coal mines in Illinois and focusing on resource potential, we illustrate how this evaluation can be applied at the state or more local scales when a region’s characteristics drive spatial variability estimates. The strength of this approach is the ability to combine seemingly disparate parameters and inputs from numerous sources. The framework is very flexible—additional criteria can be easily incorporated and weights modified if input data support them. Vice versa, the framework can also help identify additional data needed for evaluating those criteria. The multicriteria screening evaluation methodology provides a framework for identifying potential candidates for detailed site evaluation and characterization.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00289-3","citationCount":"0","resultStr":"{\"title\":\"Multicriteria screening evaluation of geothermal resources on mine lands for direct use heating\",\"authors\":\"Erika Gasperikova, Craig Ulrich, Olufemi A. Omitaomu, Patrick Dobson, Yingqi Zhang\",\"doi\":\"10.1186/s40517-024-00289-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Direct use of geothermal energy is the oldest and most versatile form of utilizing geothermal energy. In the last decade, this utilization has significantly increased, especially with the installation of geothermal (ground-source) heat pumps. Many current and inactive mine land sites across the U.S. could be redeveloped with clean energy technologies such as direct use geothermal, which would revitalize former mining communities, help with reducing greenhouse gas emissions, and accelerate the transition to a clean energy economy. We present a multicriteria screening framework to evaluate various aspects of direct-use geothermal projects on mine lands. The criteria are divided into three categories: (1) technical potential, (2) demand and benefits, and (3) regulatory and permitting. We demonstrate the framework using publicly available data on a national scale (continental U.S.). Then, using an example of abandoned coal mines in Illinois and focusing on resource potential, we illustrate how this evaluation can be applied at the state or more local scales when a region’s characteristics drive spatial variability estimates. The strength of this approach is the ability to combine seemingly disparate parameters and inputs from numerous sources. The framework is very flexible—additional criteria can be easily incorporated and weights modified if input data support them. Vice versa, the framework can also help identify additional data needed for evaluating those criteria. The multicriteria screening evaluation methodology provides a framework for identifying potential candidates for detailed site evaluation and characterization.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00289-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-024-00289-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00289-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Multicriteria screening evaluation of geothermal resources on mine lands for direct use heating
Direct use of geothermal energy is the oldest and most versatile form of utilizing geothermal energy. In the last decade, this utilization has significantly increased, especially with the installation of geothermal (ground-source) heat pumps. Many current and inactive mine land sites across the U.S. could be redeveloped with clean energy technologies such as direct use geothermal, which would revitalize former mining communities, help with reducing greenhouse gas emissions, and accelerate the transition to a clean energy economy. We present a multicriteria screening framework to evaluate various aspects of direct-use geothermal projects on mine lands. The criteria are divided into three categories: (1) technical potential, (2) demand and benefits, and (3) regulatory and permitting. We demonstrate the framework using publicly available data on a national scale (continental U.S.). Then, using an example of abandoned coal mines in Illinois and focusing on resource potential, we illustrate how this evaluation can be applied at the state or more local scales when a region’s characteristics drive spatial variability estimates. The strength of this approach is the ability to combine seemingly disparate parameters and inputs from numerous sources. The framework is very flexible—additional criteria can be easily incorporated and weights modified if input data support them. Vice versa, the framework can also help identify additional data needed for evaluating those criteria. The multicriteria screening evaluation methodology provides a framework for identifying potential candidates for detailed site evaluation and characterization.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.