轨道车辆空气弹簧波纹管中帘线橡胶复合材料的疲劳行为

J. Torggler , C. Buzzi , M. Leitner , T. Faethe , H. Müller
{"title":"轨道车辆空气弹簧波纹管中帘线橡胶复合材料的疲劳行为","authors":"J. Torggler ,&nbsp;C. Buzzi ,&nbsp;M. Leitner ,&nbsp;T. Faethe ,&nbsp;H. Müller","doi":"10.1016/j.prostr.2024.03.018","DOIUrl":null,"url":null,"abstract":"<div><p>Bogies of rail vehicles for passenger coaches and traction units commonly contain air spring systems as secondary spring stages. In the development and design of spring stages, it is necessary to ensure precise knowledge about the material properties and fatigue behaviour of the air spring bellows.</p><p>The aim of this work is to systematically investigate the damage mechanisms evaluated at air spring bellows on sample level and to analyse the fatigue strength of the base material under different load conditions. The specially developed small-scale sample is biaxially loaded and different layups are examined at varying load levels. In the tests with different parameters, an increase in the mean value of the longitudinal displacement by 20 % has proved to act as a suitable failure criterion. In addition to the purely optical damage analysis, micro computed tomography analysis was carried out.</p><p>In this study, four layered samples with a fibre angle of ±15, ±25 and ±35 degrees in respect to the longitudinal direction are examined. A global evaluation of the service life tests reveals that under comparable load conditions, the fibre angle exhibits a clear influence on the fatigue strength. The increase of 10 degree in fibre angle roughly results in a 15 % reduction of the tolerable lateral displacement amplitude at a number of fifty thousand load-cycles which commonly acts as design lifetime. In a second step, a local analysis based on an analytical approach is presented. With the help of the fibre strain amplitude calculated, all fatigue test data points can be unified to a master S/N-curve leading to an elaborated design model of cord rubber composite materials used in air spring bellows of rail vehicles.</p><p>With the help of the presented methodology utilizing the developed representative small-scale sample testing procedure and evaluation approach, a time- and cost-efficient fatigue design is facilitated.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245232162400235X/pdf?md5=c3050617ec7a93ca5d2c2ab502bd18f1&pid=1-s2.0-S245232162400235X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fatigue Behaviour of Cord Rubber Composite Materials in Air Spring Bellows of Rail Vehicles\",\"authors\":\"J. Torggler ,&nbsp;C. Buzzi ,&nbsp;M. Leitner ,&nbsp;T. Faethe ,&nbsp;H. Müller\",\"doi\":\"10.1016/j.prostr.2024.03.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bogies of rail vehicles for passenger coaches and traction units commonly contain air spring systems as secondary spring stages. In the development and design of spring stages, it is necessary to ensure precise knowledge about the material properties and fatigue behaviour of the air spring bellows.</p><p>The aim of this work is to systematically investigate the damage mechanisms evaluated at air spring bellows on sample level and to analyse the fatigue strength of the base material under different load conditions. The specially developed small-scale sample is biaxially loaded and different layups are examined at varying load levels. In the tests with different parameters, an increase in the mean value of the longitudinal displacement by 20 % has proved to act as a suitable failure criterion. In addition to the purely optical damage analysis, micro computed tomography analysis was carried out.</p><p>In this study, four layered samples with a fibre angle of ±15, ±25 and ±35 degrees in respect to the longitudinal direction are examined. A global evaluation of the service life tests reveals that under comparable load conditions, the fibre angle exhibits a clear influence on the fatigue strength. The increase of 10 degree in fibre angle roughly results in a 15 % reduction of the tolerable lateral displacement amplitude at a number of fifty thousand load-cycles which commonly acts as design lifetime. In a second step, a local analysis based on an analytical approach is presented. With the help of the fibre strain amplitude calculated, all fatigue test data points can be unified to a master S/N-curve leading to an elaborated design model of cord rubber composite materials used in air spring bellows of rail vehicles.</p><p>With the help of the presented methodology utilizing the developed representative small-scale sample testing procedure and evaluation approach, a time- and cost-efficient fatigue design is facilitated.</p></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S245232162400235X/pdf?md5=c3050617ec7a93ca5d2c2ab502bd18f1&pid=1-s2.0-S245232162400235X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245232162400235X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245232162400235X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

客车和牵引车的转向架通常包含空气弹簧系统作为二级弹簧。在弹簧级的开发和设计中,有必要确保对空气弹簧波纹管的材料特性和疲劳行为有精确的了解。这项工作的目的是系统地研究空气弹簧波纹管在样品水平上的损坏机制,并分析基体材料在不同载荷条件下的疲劳强度。对专门开发的小尺寸样品进行了双轴加载,并在不同的载荷水平下对不同的铺层进行了检验。在不同参数的测试中,纵向位移平均值增加 20% 被证明是一个合适的失效标准。除了纯粹的光学损伤分析外,还进行了微型计算机断层扫描分析。在这项研究中,对纤维与纵向方向的夹角分别为±15、±25 和±35 度的四层样品进行了检测。对使用寿命测试的整体评估显示,在可比负载条件下,纤维角度对疲劳强度有明显影响。纤维角每增加 10 度,就会导致在通常作为设计寿命的五万次载荷循环时,可承受的横向位移幅度减少 15%。第二步是基于分析方法的局部分析。在纤维应变振幅计算的帮助下,所有疲劳测试数据点都可以统一到主 S/N 曲线上,从而为轨道车辆空气弹簧波纹管中使用的帘线橡胶复合材料建立详细的设计模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue Behaviour of Cord Rubber Composite Materials in Air Spring Bellows of Rail Vehicles

Bogies of rail vehicles for passenger coaches and traction units commonly contain air spring systems as secondary spring stages. In the development and design of spring stages, it is necessary to ensure precise knowledge about the material properties and fatigue behaviour of the air spring bellows.

The aim of this work is to systematically investigate the damage mechanisms evaluated at air spring bellows on sample level and to analyse the fatigue strength of the base material under different load conditions. The specially developed small-scale sample is biaxially loaded and different layups are examined at varying load levels. In the tests with different parameters, an increase in the mean value of the longitudinal displacement by 20 % has proved to act as a suitable failure criterion. In addition to the purely optical damage analysis, micro computed tomography analysis was carried out.

In this study, four layered samples with a fibre angle of ±15, ±25 and ±35 degrees in respect to the longitudinal direction are examined. A global evaluation of the service life tests reveals that under comparable load conditions, the fibre angle exhibits a clear influence on the fatigue strength. The increase of 10 degree in fibre angle roughly results in a 15 % reduction of the tolerable lateral displacement amplitude at a number of fifty thousand load-cycles which commonly acts as design lifetime. In a second step, a local analysis based on an analytical approach is presented. With the help of the fibre strain amplitude calculated, all fatigue test data points can be unified to a master S/N-curve leading to an elaborated design model of cord rubber composite materials used in air spring bellows of rail vehicles.

With the help of the presented methodology utilizing the developed representative small-scale sample testing procedure and evaluation approach, a time- and cost-efficient fatigue design is facilitated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Editorial Editorial Preface Editorial Strain measurement consistency of distributed fiber optic sensors for monitoring composite structures under various loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1