Darci R Block, Michael A Lasho, Leslie J Donato, Jeffrey W Meeusen
{"title":"为罗氏 cobas 仪器测量的体液化学分析物建立溶血、黄疸和脂血干扰限。","authors":"Darci R Block, Michael A Lasho, Leslie J Donato, Jeffrey W Meeusen","doi":"10.1093/ajcp/aqae040","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aims of this study were to (1) establish the maximum allowable interference limits for hemolysis, lipemia, and icterus for chemistry analytes tested in body fluid samples and (2) assess the effectiveness of serial dilution to mitigate spectral interferences.</p><p><strong>Methods: </strong>Residual body fluids from clinically ordered testing were mixed (<10% by volume) with stock solutions of interferent (spiked) and compared with a control spiked with an equal volume of 0.9% saline. The analytes were measured on the Roche cobas c501 instrument. Difference and percentage difference were calculated and compared with allowable total error limits. A subset of samples were serially diluted with 0.9% saline. Mean (SD) difference and percentage difference were calculated.</p><p><strong>Results: </strong>The interference thresholds were lower than the package insert for lactate dehydrogenase, cholesterol, triglycerides, and total protein for hemolysis; amylase, cholesterol, and total protein for icterus; and albumin for lipemia. Only cholesterol and triglyceride results returned to baseline upon dilution of icteric samples.</p><p><strong>Conclusions: </strong>Interference thresholds in body fluids were lower than blood for 6 analytes. Diluting interferences that surpass these limits does not produce reliable results that are comparable to the baseline results before spiking in the interferent.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing hemolysis, icterus, and lipemia interference limits for body fluid chemistry analytes measured on the Roche cobas instrument.\",\"authors\":\"Darci R Block, Michael A Lasho, Leslie J Donato, Jeffrey W Meeusen\",\"doi\":\"10.1093/ajcp/aqae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The aims of this study were to (1) establish the maximum allowable interference limits for hemolysis, lipemia, and icterus for chemistry analytes tested in body fluid samples and (2) assess the effectiveness of serial dilution to mitigate spectral interferences.</p><p><strong>Methods: </strong>Residual body fluids from clinically ordered testing were mixed (<10% by volume) with stock solutions of interferent (spiked) and compared with a control spiked with an equal volume of 0.9% saline. The analytes were measured on the Roche cobas c501 instrument. Difference and percentage difference were calculated and compared with allowable total error limits. A subset of samples were serially diluted with 0.9% saline. Mean (SD) difference and percentage difference were calculated.</p><p><strong>Results: </strong>The interference thresholds were lower than the package insert for lactate dehydrogenase, cholesterol, triglycerides, and total protein for hemolysis; amylase, cholesterol, and total protein for icterus; and albumin for lipemia. Only cholesterol and triglyceride results returned to baseline upon dilution of icteric samples.</p><p><strong>Conclusions: </strong>Interference thresholds in body fluids were lower than blood for 6 analytes. Diluting interferences that surpass these limits does not produce reliable results that are comparable to the baseline results before spiking in the interferent.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ajcp/aqae040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ajcp/aqae040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Establishing hemolysis, icterus, and lipemia interference limits for body fluid chemistry analytes measured on the Roche cobas instrument.
Objectives: The aims of this study were to (1) establish the maximum allowable interference limits for hemolysis, lipemia, and icterus for chemistry analytes tested in body fluid samples and (2) assess the effectiveness of serial dilution to mitigate spectral interferences.
Methods: Residual body fluids from clinically ordered testing were mixed (<10% by volume) with stock solutions of interferent (spiked) and compared with a control spiked with an equal volume of 0.9% saline. The analytes were measured on the Roche cobas c501 instrument. Difference and percentage difference were calculated and compared with allowable total error limits. A subset of samples were serially diluted with 0.9% saline. Mean (SD) difference and percentage difference were calculated.
Results: The interference thresholds were lower than the package insert for lactate dehydrogenase, cholesterol, triglycerides, and total protein for hemolysis; amylase, cholesterol, and total protein for icterus; and albumin for lipemia. Only cholesterol and triglyceride results returned to baseline upon dilution of icteric samples.
Conclusions: Interference thresholds in body fluids were lower than blood for 6 analytes. Diluting interferences that surpass these limits does not produce reliable results that are comparable to the baseline results before spiking in the interferent.