{"title":"miR-150-5p/SOCS1 通路在砷诱导的 LX-2 细胞猝灭中的作用","authors":"Mengyao Zhang, Linzhi Li, Shugang Li","doi":"10.1007/s12011-024-04211-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the mechanism of pyroptosis of human hepatocyte LX-2 cells induced by NaAsO<sub>2</sub> through the miR-150-5p/SOCS1 pathway. LX-2 cells were transfected with different concentrations of NaAsO<sub>2</sub>, miR-150-5p inhibitor, and SOCS1 agonist. Cell activity, cell pyroptosis, and the expression of related genes and proteins were detected by scanning electron microscopy, CCK-8, qRT-PCR, western blot, and immunofluorescence. Compared with the control group, 10 µmol/L and 20 µmol/L NaAsO<sub>2</sub> significantly elevated the protein expression levels of the pyroptosis-related proteins NLRP3, GSDMD, GSDMD-N, caspase1, and cleaved caspase1 as well as the mRNA levels of NLRP3, GSDMD, caspase1, IL-18, and IL-1β. The typical pyroptosis with swelling and rupture of the plasma membrane was observed through scanning electron microscopy. The expression of miR-150-5p of the NaAsO<sub>2</sub> intervention group increased, while the expression of SOCS1 decreased; then the level of NF-κB p65 elevated. With co-treatment of miR-150-5p inhibitor, SOCS1 agonist, and NaAsO<sub>2</sub>, the cell pyroptosis was attenuated, and the expressions of NLRP3, caspase1, GSDMD, GSDMD-N, IL-18, IL-1β, p65 of the group of miR-150-5p inhibitor and NaAsO<sub>2</sub> group, and of the group of SOCS1 agonist and NaAsO<sub>2</sub> reduced compared with the NaAsO<sub>2</sub> group. Arsenic exposure promotes miR-150-5p, inhibits the expression of SOCS1, and activates the NF-κB/NLRP3 pathway in LX-2 cell pyroptosis.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"822-834"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of miR-150-5p/SOCS1 Pathway in Arsenic-Induced Pyroptosis of LX-2 Cells.\",\"authors\":\"Mengyao Zhang, Linzhi Li, Shugang Li\",\"doi\":\"10.1007/s12011-024-04211-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to explore the mechanism of pyroptosis of human hepatocyte LX-2 cells induced by NaAsO<sub>2</sub> through the miR-150-5p/SOCS1 pathway. LX-2 cells were transfected with different concentrations of NaAsO<sub>2</sub>, miR-150-5p inhibitor, and SOCS1 agonist. Cell activity, cell pyroptosis, and the expression of related genes and proteins were detected by scanning electron microscopy, CCK-8, qRT-PCR, western blot, and immunofluorescence. Compared with the control group, 10 µmol/L and 20 µmol/L NaAsO<sub>2</sub> significantly elevated the protein expression levels of the pyroptosis-related proteins NLRP3, GSDMD, GSDMD-N, caspase1, and cleaved caspase1 as well as the mRNA levels of NLRP3, GSDMD, caspase1, IL-18, and IL-1β. The typical pyroptosis with swelling and rupture of the plasma membrane was observed through scanning electron microscopy. The expression of miR-150-5p of the NaAsO<sub>2</sub> intervention group increased, while the expression of SOCS1 decreased; then the level of NF-κB p65 elevated. With co-treatment of miR-150-5p inhibitor, SOCS1 agonist, and NaAsO<sub>2</sub>, the cell pyroptosis was attenuated, and the expressions of NLRP3, caspase1, GSDMD, GSDMD-N, IL-18, IL-1β, p65 of the group of miR-150-5p inhibitor and NaAsO<sub>2</sub> group, and of the group of SOCS1 agonist and NaAsO<sub>2</sub> reduced compared with the NaAsO<sub>2</sub> group. Arsenic exposure promotes miR-150-5p, inhibits the expression of SOCS1, and activates the NF-κB/NLRP3 pathway in LX-2 cell pyroptosis.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"822-834\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04211-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04211-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Role of miR-150-5p/SOCS1 Pathway in Arsenic-Induced Pyroptosis of LX-2 Cells.
This study aims to explore the mechanism of pyroptosis of human hepatocyte LX-2 cells induced by NaAsO2 through the miR-150-5p/SOCS1 pathway. LX-2 cells were transfected with different concentrations of NaAsO2, miR-150-5p inhibitor, and SOCS1 agonist. Cell activity, cell pyroptosis, and the expression of related genes and proteins were detected by scanning electron microscopy, CCK-8, qRT-PCR, western blot, and immunofluorescence. Compared with the control group, 10 µmol/L and 20 µmol/L NaAsO2 significantly elevated the protein expression levels of the pyroptosis-related proteins NLRP3, GSDMD, GSDMD-N, caspase1, and cleaved caspase1 as well as the mRNA levels of NLRP3, GSDMD, caspase1, IL-18, and IL-1β. The typical pyroptosis with swelling and rupture of the plasma membrane was observed through scanning electron microscopy. The expression of miR-150-5p of the NaAsO2 intervention group increased, while the expression of SOCS1 decreased; then the level of NF-κB p65 elevated. With co-treatment of miR-150-5p inhibitor, SOCS1 agonist, and NaAsO2, the cell pyroptosis was attenuated, and the expressions of NLRP3, caspase1, GSDMD, GSDMD-N, IL-18, IL-1β, p65 of the group of miR-150-5p inhibitor and NaAsO2 group, and of the group of SOCS1 agonist and NaAsO2 reduced compared with the NaAsO2 group. Arsenic exposure promotes miR-150-5p, inhibits the expression of SOCS1, and activates the NF-κB/NLRP3 pathway in LX-2 cell pyroptosis.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.