Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt
{"title":"槟榔叶提取物的绿色合成银纳米粒子:合成、表征、硅内研究和抗疟活性。","authors":"Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt","doi":"10.1080/21691401.2024.2339429","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria is a mosquito-borne infectious disease that is caused by the <i>Plasmodium</i> parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of <i>Terminalia bellirica</i>, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from <i>Plasmodium</i> species were studied <i>in silico</i> as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of <i>Terminalia bellirica</i> were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, <i>Plasmodium falciparum</i> (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"238-249"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesized silver nanoparticles of <i>Terminalia bellirica</i> leaves extract: synthesis, characterization, <i>in-silico</i> studies, and antimalarial activity.\",\"authors\":\"Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt\",\"doi\":\"10.1080/21691401.2024.2339429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malaria is a mosquito-borne infectious disease that is caused by the <i>Plasmodium</i> parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of <i>Terminalia bellirica</i>, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from <i>Plasmodium</i> species were studied <i>in silico</i> as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of <i>Terminalia bellirica</i> were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, <i>Plasmodium falciparum</i> (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"52 1\",\"pages\":\"238-249\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2024.2339429\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2024.2339429","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Green synthesized silver nanoparticles of Terminalia bellirica leaves extract: synthesis, characterization, in-silico studies, and antimalarial activity.
Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.