Ho Am Jang, Hyeonjun Shin, Seo Jin Lee, Sung Min Ku, Jae Hui Kim, Dong Woo Kang, So Yeon Choi, Sang Mok Jung, Hyun Woung Shin, Yong Seok Lee, Yeon Soo Han, Yong Hun Jo
{"title":"超氧化物歧化酶的硅学鉴定和表达分析。","authors":"Ho Am Jang, Hyeonjun Shin, Seo Jin Lee, Sung Min Ku, Jae Hui Kim, Dong Woo Kang, So Yeon Choi, Sang Mok Jung, Hyun Woung Shin, Yong Seok Lee, Yeon Soo Han, Yong Hun Jo","doi":"10.1007/s13258-024-01518-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Insects encounter various environmental stresses, in response to which they generate reactive oxygen species (ROS). Superoxide dismutase (SOD) is an antioxidant metalloenzyme that scavenges superoxide radicals to prevent oxidative damage.</p><p><strong>Objective: </strong>To investigate expressions of SODs under oxidative stress in Tenebrio molitor.</p><p><strong>Methods: </strong>Here, we investigated the transcriptional expression of SODs by pesticide and heavy metals in Tenebrio moltior. First, we searched an RNA-Seq database for T. molitor SOD (TmSOD) genes and identified two SOD isoforms (TmSOD1-iso1 and iso2). We examined their activities under developmental stage, tissue-specific, and various types (pesticide and heavy metal) of oxidative stress by using qPCR.</p><p><strong>Results: </strong>Our results revealed two novel forms of TmSODs. These TmSODs had a copper/zinc superoxide dismutase domain, active site, Cu<sup>2+</sup> binding site, Zn<sup>2+</sup> binding site, E-class dimer interface, and P-class dimer interface. TmSODs (TmSOD1-iso1 and iso2) were expressed in diverse developmental phases and tissues. Pesticides and heavy metals caused an upregulation of these TmSODs.</p><p><strong>Conclusion: </strong>Our findings suggest that the two TmSODs have different functions in T. molitor, providing insights into the detoxification ability of T. molitor.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"733-742"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico identification and expression analysis of superoxide dismutases in Tenebrio molitor.\",\"authors\":\"Ho Am Jang, Hyeonjun Shin, Seo Jin Lee, Sung Min Ku, Jae Hui Kim, Dong Woo Kang, So Yeon Choi, Sang Mok Jung, Hyun Woung Shin, Yong Seok Lee, Yeon Soo Han, Yong Hun Jo\",\"doi\":\"10.1007/s13258-024-01518-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Insects encounter various environmental stresses, in response to which they generate reactive oxygen species (ROS). Superoxide dismutase (SOD) is an antioxidant metalloenzyme that scavenges superoxide radicals to prevent oxidative damage.</p><p><strong>Objective: </strong>To investigate expressions of SODs under oxidative stress in Tenebrio molitor.</p><p><strong>Methods: </strong>Here, we investigated the transcriptional expression of SODs by pesticide and heavy metals in Tenebrio moltior. First, we searched an RNA-Seq database for T. molitor SOD (TmSOD) genes and identified two SOD isoforms (TmSOD1-iso1 and iso2). We examined their activities under developmental stage, tissue-specific, and various types (pesticide and heavy metal) of oxidative stress by using qPCR.</p><p><strong>Results: </strong>Our results revealed two novel forms of TmSODs. These TmSODs had a copper/zinc superoxide dismutase domain, active site, Cu<sup>2+</sup> binding site, Zn<sup>2+</sup> binding site, E-class dimer interface, and P-class dimer interface. TmSODs (TmSOD1-iso1 and iso2) were expressed in diverse developmental phases and tissues. Pesticides and heavy metals caused an upregulation of these TmSODs.</p><p><strong>Conclusion: </strong>Our findings suggest that the two TmSODs have different functions in T. molitor, providing insights into the detoxification ability of T. molitor.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"733-742\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01518-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01518-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In silico identification and expression analysis of superoxide dismutases in Tenebrio molitor.
Background: Insects encounter various environmental stresses, in response to which they generate reactive oxygen species (ROS). Superoxide dismutase (SOD) is an antioxidant metalloenzyme that scavenges superoxide radicals to prevent oxidative damage.
Objective: To investigate expressions of SODs under oxidative stress in Tenebrio molitor.
Methods: Here, we investigated the transcriptional expression of SODs by pesticide and heavy metals in Tenebrio moltior. First, we searched an RNA-Seq database for T. molitor SOD (TmSOD) genes and identified two SOD isoforms (TmSOD1-iso1 and iso2). We examined their activities under developmental stage, tissue-specific, and various types (pesticide and heavy metal) of oxidative stress by using qPCR.
Results: Our results revealed two novel forms of TmSODs. These TmSODs had a copper/zinc superoxide dismutase domain, active site, Cu2+ binding site, Zn2+ binding site, E-class dimer interface, and P-class dimer interface. TmSODs (TmSOD1-iso1 and iso2) were expressed in diverse developmental phases and tissues. Pesticides and heavy metals caused an upregulation of these TmSODs.
Conclusion: Our findings suggest that the two TmSODs have different functions in T. molitor, providing insights into the detoxification ability of T. molitor.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.