海茴香提取物可将肝癌细胞的脂质平衡和代谢谱恢复到正常表型

IF 3.1 2区 农林科学 Q2 CHEMISTRY, APPLIED Plant Foods for Human Nutrition Pub Date : 2024-06-01 Epub Date: 2024-05-06 DOI:10.1007/s11130-024-01188-5
Davide Gnocchi, Dragana Nikolic, Rosa Rita Paparella, Carlo Sabbà, Antonio Mazzocca
{"title":"海茴香提取物可将肝癌细胞的脂质平衡和代谢谱恢复到正常表型","authors":"Davide Gnocchi, Dragana Nikolic, Rosa Rita Paparella, Carlo Sabbà, Antonio Mazzocca","doi":"10.1007/s11130-024-01188-5","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is an alarming epidemiological clinical problem worldwide. Pharmacological approaches currently available do not provide adequate responses due to poor effectiveness, high toxicity, and serious side effects. Our previous studies have shown that the wild edible plant Crithmum maritimum L. inhibits the growth of liver cancer cells and promotes liver cell differentiation by reducing lactic acid fermentation (Warburg effect). Here, we aimed to further characterise the effects of C. maritimum on lipid metabolism and markers of cellular metabolic health, such as AMP-activated protein kinase (AMPK), Sirtuin 1 (SIRT1), and Sirtuin 3 (SIRT3), as well as the insulin signalling pathway. To better mimic the biological spectrum of HCC, we employed four HCC cell lines with different degrees of tumorigenicity and lactic acid fermentation/Warburg phenotype. Lipid accumulation was assessed by Oil Red O (ORO) staining, while gene expression was measured by real-time quantitative PCR (RT-qPCR). The activation of AMPK and insulin signalling pathways was determined by Western blotting. Results indicate that C. maritimum prevents lipid accumulation, downregulates lipid and cholesterol biosynthesis, and modulates markers of metabolic health, such as AMPK, SIRT1 and SIRT3. This modulation is different amongst HCC cell lines, revealing an important functional versatility of C. maritimum. Taken together, our findings corroborate the importance of C. maritimum as a valuable nutraceutical, reinforcing its role for the improvement of metabolic health.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crithmum maritimum Extract Restores Lipid Homeostasis and Metabolic Profile of Liver Cancer Cells to a Normal Phenotype.\",\"authors\":\"Davide Gnocchi, Dragana Nikolic, Rosa Rita Paparella, Carlo Sabbà, Antonio Mazzocca\",\"doi\":\"10.1007/s11130-024-01188-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is an alarming epidemiological clinical problem worldwide. Pharmacological approaches currently available do not provide adequate responses due to poor effectiveness, high toxicity, and serious side effects. Our previous studies have shown that the wild edible plant Crithmum maritimum L. inhibits the growth of liver cancer cells and promotes liver cell differentiation by reducing lactic acid fermentation (Warburg effect). Here, we aimed to further characterise the effects of C. maritimum on lipid metabolism and markers of cellular metabolic health, such as AMP-activated protein kinase (AMPK), Sirtuin 1 (SIRT1), and Sirtuin 3 (SIRT3), as well as the insulin signalling pathway. To better mimic the biological spectrum of HCC, we employed four HCC cell lines with different degrees of tumorigenicity and lactic acid fermentation/Warburg phenotype. Lipid accumulation was assessed by Oil Red O (ORO) staining, while gene expression was measured by real-time quantitative PCR (RT-qPCR). The activation of AMPK and insulin signalling pathways was determined by Western blotting. Results indicate that C. maritimum prevents lipid accumulation, downregulates lipid and cholesterol biosynthesis, and modulates markers of metabolic health, such as AMPK, SIRT1 and SIRT3. This modulation is different amongst HCC cell lines, revealing an important functional versatility of C. maritimum. Taken together, our findings corroborate the importance of C. maritimum as a valuable nutraceutical, reinforcing its role for the improvement of metabolic health.</p>\",\"PeriodicalId\":20092,\"journal\":{\"name\":\"Plant Foods for Human Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Foods for Human Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11130-024-01188-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-024-01188-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是全球范围内一个令人担忧的流行病学临床问题。由于疗效差、毒性大、副作用严重等原因,目前可用的药物疗法并不能提供充分的应对措施。我们之前的研究表明,野生食用植物海茴香(Crithmum maritimum L.)能抑制肝癌细胞的生长,并通过减少乳酸发酵(沃伯格效应)促进肝细胞分化。在这里,我们的目的是进一步确定海胆对脂质代谢和细胞代谢健康标志物(如 AMPK、Sirtuin 1(SIRT1)和 Sirtuin 3(SIRT3))以及胰岛素信号通路的影响。为了更好地模拟 HCC 的生物谱,我们采用了四种具有不同致瘤性和乳酸发酵/沃斯堡表型的 HCC 细胞系。脂质积累通过油红 O(ORO)染色进行评估,基因表达则通过实时定量 PCR(RT-qPCR)进行测量。通过 Western 印迹法测定了 AMPK 和胰岛素信号通路的激活情况。结果表明,海带能防止脂质积累,下调脂质和胆固醇的生物合成,并调节 AMPK、SIRT1 和 SIRT3 等代谢健康标志物。这种调节作用在不同的 HCC 细胞系中各不相同,揭示了海藻糖肽的重要多功能性。总之,我们的研究结果证实了海刺芹作为一种有价值的营养保健品的重要性,加强了它在改善代谢健康方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crithmum maritimum Extract Restores Lipid Homeostasis and Metabolic Profile of Liver Cancer Cells to a Normal Phenotype.

Hepatocellular carcinoma (HCC) is an alarming epidemiological clinical problem worldwide. Pharmacological approaches currently available do not provide adequate responses due to poor effectiveness, high toxicity, and serious side effects. Our previous studies have shown that the wild edible plant Crithmum maritimum L. inhibits the growth of liver cancer cells and promotes liver cell differentiation by reducing lactic acid fermentation (Warburg effect). Here, we aimed to further characterise the effects of C. maritimum on lipid metabolism and markers of cellular metabolic health, such as AMP-activated protein kinase (AMPK), Sirtuin 1 (SIRT1), and Sirtuin 3 (SIRT3), as well as the insulin signalling pathway. To better mimic the biological spectrum of HCC, we employed four HCC cell lines with different degrees of tumorigenicity and lactic acid fermentation/Warburg phenotype. Lipid accumulation was assessed by Oil Red O (ORO) staining, while gene expression was measured by real-time quantitative PCR (RT-qPCR). The activation of AMPK and insulin signalling pathways was determined by Western blotting. Results indicate that C. maritimum prevents lipid accumulation, downregulates lipid and cholesterol biosynthesis, and modulates markers of metabolic health, such as AMPK, SIRT1 and SIRT3. This modulation is different amongst HCC cell lines, revealing an important functional versatility of C. maritimum. Taken together, our findings corroborate the importance of C. maritimum as a valuable nutraceutical, reinforcing its role for the improvement of metabolic health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Foods for Human Nutrition
Plant Foods for Human Nutrition 工程技术-食品科技
CiteScore
6.80
自引率
7.50%
发文量
89
审稿时长
12-24 weeks
期刊介绍: Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by: - Biotechnology (all fields, including molecular biology and genetic engineering) - Food science and technology - Functional, nutraceutical or pharma foods - Other nutrients and non-nutrients inherent in plant foods
期刊最新文献
Evaluation of Nutritional and Functional Properties of Chasubi - A Traditional Food. Influence of Plant Phenology on Chemical Composition of Monarda fistulosa L. Organs and their Bioactive Properties. Effect and Mechanism of Apple Polyphenols in Regulating Intestinal Flora and Inhibiting the TLR4/NF-κB/TGF-β Signaling Pathway to Alleviate Alcoholic Liver Fibrosis Investigating the Impact of Moisture Levels on Structural Alterations and Physicochemical Properties of Cassava Flour through Extrusion: A Comprehensive Study Nomilin Reversed Cardiotoxicity Caused by Co-exposure to Zearalenone and Deoxynivalenol via the Keap1/Nrf2 Signaling Pathway in Zebrafish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1