{"title":"小鼠巨噬细胞中指导 Il6 转录的推定增强子区域的鉴定和特征描述","authors":"Norisuke Kano, Takeo Miki, Yurina Uehara, Daisuke Ori, Taro Kawai","doi":"10.1093/intimm/dxae024","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-6 (IL-6) plays a crucial role in various cellular functions, including innate and adaptive immune responses. Dysregulated expression of IL-6 is associated with hyperinflammation and chronic inflammatory diseases. In this study, we aimed to identify the enhancer regions responsible for robust Il6 mRNA expression in murine macrophages. Through comprehensive genome-wide ChIP- and ATAC-seq analyses, we identified two distinct clusters, termed E1 and E2 regions, located at -144 to -163 kb relative to the Il6 transcription start site in lipopolysaccharide (LPS)-activated murine macrophages. These clusters exhibited an accumulation of histone modification marks (H3K27ac and H3K4me1), as well as open chromatin, and were found to contain binding sites for the transcription factors PU.1, NF-κB, C/EBPβ, and JunB. Upregulation of non-coding RNA (ncRNA) transcripts from the E1 and E2 regions was observed upon LPS stimulation, and repression of these ncRNAs resulted in abrogation of Il6 expression. Additionally, deletion of either E1 or E2 region significantly impaired Il6 expression, while CRISPR/dCas9 activation-mediated recruitment of the co-activator p300 to the E1 and E2 regions facilitated Il6 expression. Collectively, our findings suggest that the E1 and E2 regions serve as putative enhancers for Il6 expression.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of putative enhancer regions that direct Il6 transcription in murine macrophages.\",\"authors\":\"Norisuke Kano, Takeo Miki, Yurina Uehara, Daisuke Ori, Taro Kawai\",\"doi\":\"10.1093/intimm/dxae024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin-6 (IL-6) plays a crucial role in various cellular functions, including innate and adaptive immune responses. Dysregulated expression of IL-6 is associated with hyperinflammation and chronic inflammatory diseases. In this study, we aimed to identify the enhancer regions responsible for robust Il6 mRNA expression in murine macrophages. Through comprehensive genome-wide ChIP- and ATAC-seq analyses, we identified two distinct clusters, termed E1 and E2 regions, located at -144 to -163 kb relative to the Il6 transcription start site in lipopolysaccharide (LPS)-activated murine macrophages. These clusters exhibited an accumulation of histone modification marks (H3K27ac and H3K4me1), as well as open chromatin, and were found to contain binding sites for the transcription factors PU.1, NF-κB, C/EBPβ, and JunB. Upregulation of non-coding RNA (ncRNA) transcripts from the E1 and E2 regions was observed upon LPS stimulation, and repression of these ncRNAs resulted in abrogation of Il6 expression. Additionally, deletion of either E1 or E2 region significantly impaired Il6 expression, while CRISPR/dCas9 activation-mediated recruitment of the co-activator p300 to the E1 and E2 regions facilitated Il6 expression. Collectively, our findings suggest that the E1 and E2 regions serve as putative enhancers for Il6 expression.</p>\",\"PeriodicalId\":13743,\"journal\":{\"name\":\"International immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/intimm/dxae024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxae024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Identification and characterization of putative enhancer regions that direct Il6 transcription in murine macrophages.
Interleukin-6 (IL-6) plays a crucial role in various cellular functions, including innate and adaptive immune responses. Dysregulated expression of IL-6 is associated with hyperinflammation and chronic inflammatory diseases. In this study, we aimed to identify the enhancer regions responsible for robust Il6 mRNA expression in murine macrophages. Through comprehensive genome-wide ChIP- and ATAC-seq analyses, we identified two distinct clusters, termed E1 and E2 regions, located at -144 to -163 kb relative to the Il6 transcription start site in lipopolysaccharide (LPS)-activated murine macrophages. These clusters exhibited an accumulation of histone modification marks (H3K27ac and H3K4me1), as well as open chromatin, and were found to contain binding sites for the transcription factors PU.1, NF-κB, C/EBPβ, and JunB. Upregulation of non-coding RNA (ncRNA) transcripts from the E1 and E2 regions was observed upon LPS stimulation, and repression of these ncRNAs resulted in abrogation of Il6 expression. Additionally, deletion of either E1 or E2 region significantly impaired Il6 expression, while CRISPR/dCas9 activation-mediated recruitment of the co-activator p300 to the E1 and E2 regions facilitated Il6 expression. Collectively, our findings suggest that the E1 and E2 regions serve as putative enhancers for Il6 expression.
期刊介绍:
International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.