Makoto Hayasaka, Takashi Kokudo, Junichi Kaneko, Takehiro Chiyoda, Anna Nakamura, Manabu Itoh, Kazuhiro Endo, Koichi Nakayama, Kiyoshi Hasegawa
{"title":"利用真皮成纤维细胞的三维生物打印管状组织作为用于静脉置换的新型组织工程血管移植物","authors":"Makoto Hayasaka, Takashi Kokudo, Junichi Kaneko, Takehiro Chiyoda, Anna Nakamura, Manabu Itoh, Kazuhiro Endo, Koichi Nakayama, Kiyoshi Hasegawa","doi":"10.1097/MAT.0000000000002224","DOIUrl":null,"url":null,"abstract":"<p><p>The current study was a preliminary evaluation of the feasibility and biologic features of three-dimensionally bio-printed tissue-engineered (3D bio-printed) vascular grafts comprising dermal fibroblast spheroids for venous replacement in rats and swine. The scaffold-free tubular tissue was made by the 3D bio-printer with normal human dermal fibroblasts. The tubular tissues were implanted into the infrarenal inferior vena cava of 4 male F344-rnu/rnu athymic nude rats and the short-term patency and histologic features were analyzed. A larger 3D bio-printed swine dermal fibroblast-derived prototype of tubular tissue was implanted into the right jugular vein of a swine and patency was evaluated at 4 weeks. The short-term patency rate was 100%. Immunohistochemistry analysis showed von Willebrand factor positivity on day 2, with more limited positivity observed on the luminal surface on day 5. Although the cross-sectional area of the wall differed significantly between preimplantation and days 2 and 5, suggesting swelling of the tubular tissue wall (both p < 0.01), the luminal diameter of the tubular tissues was not significantly altered during this period. The 3D bio-printed scaffold-free tubular tissues using human dermal or swine fibroblast spheroids may produce better tissue-engineered vascular grafts for venous replacement in rats or swine.</p>","PeriodicalId":8844,"journal":{"name":"ASAIO Journal","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Bio-Printed Tubular Tissue Using Dermal Fibroblast Cells as a New Tissue-Engineered Vascular Graft for Venous Replacement.\",\"authors\":\"Makoto Hayasaka, Takashi Kokudo, Junichi Kaneko, Takehiro Chiyoda, Anna Nakamura, Manabu Itoh, Kazuhiro Endo, Koichi Nakayama, Kiyoshi Hasegawa\",\"doi\":\"10.1097/MAT.0000000000002224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current study was a preliminary evaluation of the feasibility and biologic features of three-dimensionally bio-printed tissue-engineered (3D bio-printed) vascular grafts comprising dermal fibroblast spheroids for venous replacement in rats and swine. The scaffold-free tubular tissue was made by the 3D bio-printer with normal human dermal fibroblasts. The tubular tissues were implanted into the infrarenal inferior vena cava of 4 male F344-rnu/rnu athymic nude rats and the short-term patency and histologic features were analyzed. A larger 3D bio-printed swine dermal fibroblast-derived prototype of tubular tissue was implanted into the right jugular vein of a swine and patency was evaluated at 4 weeks. The short-term patency rate was 100%. Immunohistochemistry analysis showed von Willebrand factor positivity on day 2, with more limited positivity observed on the luminal surface on day 5. Although the cross-sectional area of the wall differed significantly between preimplantation and days 2 and 5, suggesting swelling of the tubular tissue wall (both p < 0.01), the luminal diameter of the tubular tissues was not significantly altered during this period. The 3D bio-printed scaffold-free tubular tissues using human dermal or swine fibroblast spheroids may produce better tissue-engineered vascular grafts for venous replacement in rats or swine.</p>\",\"PeriodicalId\":8844,\"journal\":{\"name\":\"ASAIO Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASAIO Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1097/MAT.0000000000002224\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAIO Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1097/MAT.0000000000002224","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Three-Dimensional Bio-Printed Tubular Tissue Using Dermal Fibroblast Cells as a New Tissue-Engineered Vascular Graft for Venous Replacement.
The current study was a preliminary evaluation of the feasibility and biologic features of three-dimensionally bio-printed tissue-engineered (3D bio-printed) vascular grafts comprising dermal fibroblast spheroids for venous replacement in rats and swine. The scaffold-free tubular tissue was made by the 3D bio-printer with normal human dermal fibroblasts. The tubular tissues were implanted into the infrarenal inferior vena cava of 4 male F344-rnu/rnu athymic nude rats and the short-term patency and histologic features were analyzed. A larger 3D bio-printed swine dermal fibroblast-derived prototype of tubular tissue was implanted into the right jugular vein of a swine and patency was evaluated at 4 weeks. The short-term patency rate was 100%. Immunohistochemistry analysis showed von Willebrand factor positivity on day 2, with more limited positivity observed on the luminal surface on day 5. Although the cross-sectional area of the wall differed significantly between preimplantation and days 2 and 5, suggesting swelling of the tubular tissue wall (both p < 0.01), the luminal diameter of the tubular tissues was not significantly altered during this period. The 3D bio-printed scaffold-free tubular tissues using human dermal or swine fibroblast spheroids may produce better tissue-engineered vascular grafts for venous replacement in rats or swine.
期刊介绍:
ASAIO Journal is in the forefront of artificial organ research and development. On the cutting edge of innovative technology, it features peer-reviewed articles of the highest quality that describe research, development, the most recent advances in the design of artificial organ devices and findings from initial testing. Bimonthly, the ASAIO Journal features state-of-the-art investigations, laboratory and clinical trials, and discussions and opinions from experts around the world.
The official publication of the American Society for Artificial Internal Organs.