Alex W. Robinson, Amirafshar Moshtaghpour, Jack Wells, Daniel Nicholls, Miaofang Chi, Ian MacLaren, Angus I. Kirkland, Nigel D. Browning
{"title":"使用压缩传感技术的高速四维扫描透射电子显微镜。","authors":"Alex W. Robinson, Amirafshar Moshtaghpour, Jack Wells, Daniel Nicholls, Miaofang Chi, Ian MacLaren, Angus I. Kirkland, Nigel D. Browning","doi":"10.1111/jmi.13315","DOIUrl":null,"url":null,"abstract":"<p>Here we show that compressive sensing allows 4-dimensional (4-D) STEM data to be obtained and accurately reconstructed with both high-speed and reduced electron fluence. The methodology needed to achieve these results compared to conventional 4-D approaches requires only that a random subset of probe locations is acquired from the typical regular scanning grid, which immediately generates both higher speed and the lower fluence experimentally. We also consider downsampling of the detector, showing that oversampling is inherent within convergent beam electron diffraction (CBED) patterns and that detector downsampling does not reduce precision but allows faster experimental data acquisition. Analysis of an experimental atomic resolution yttrium silicide dataset shows that it is possible to recover over 25 dB peak signal-to-noise ratio in the recovered phase using 0.3% of the total data.</p><p><b>Lay abstract</b>: Four-dimensional scanning transmission electron microscopy (4-D STEM) is a powerful technique for characterizing complex nanoscale structures. In this method, a convergent beam electron diffraction pattern (CBED) is acquired at each probe location during the scan of the sample. This means that a 2-dimensional signal is acquired at each 2-D probe location, equating to a 4-D dataset.</p><p>Despite the recent development of fast direct electron detectors, some capable of 100kHz frame rates, the limiting factor for 4-D STEM is acquisition times in the majority of cases, where cameras will typically operate on the order of 2kHz. This means that a raster scan containing 256^2 probe locations can take on the order of 30s, approximately 100-1000 times longer than a conventional STEM imaging technique using monolithic radial detectors. As a result, 4-D STEM acquisitions can be subject to adverse effects such as drift, beam damage, and sample contamination.</p><p>Recent advances in computational imaging techniques for STEM have allowed for faster acquisition speeds by way of acquiring only a random subset of probe locations from the field of view. By doing this, the acquisition time is significantly reduced, in some cases by a factor of 10-100 times. The acquired data is then processed to fill-in or inpaint the missing data, taking advantage of the inherently low-complex signals which can be linearly combined to recover the information.</p><p>In this work, similar methods are demonstrated for the acquisition of 4-D STEM data, where only a random subset of CBED patterns are acquired over the raster scan. We simulate the compressive sensing acquisition method for 4-D STEM and present our findings for a variety of analysis techniques such as ptychography and differential phase contrast. Our results show that acquisition times can be significantly reduced on the order of 100-300 times, therefore improving existing frame rates, as well as further reducing the electron fluence beyond just using a faster camera.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"295 3","pages":"278-286"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13315","citationCount":"0","resultStr":"{\"title\":\"High-speed 4-dimensional scanning transmission electron microscopy using compressive sensing techniques\",\"authors\":\"Alex W. Robinson, Amirafshar Moshtaghpour, Jack Wells, Daniel Nicholls, Miaofang Chi, Ian MacLaren, Angus I. Kirkland, Nigel D. Browning\",\"doi\":\"10.1111/jmi.13315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here we show that compressive sensing allows 4-dimensional (4-D) STEM data to be obtained and accurately reconstructed with both high-speed and reduced electron fluence. The methodology needed to achieve these results compared to conventional 4-D approaches requires only that a random subset of probe locations is acquired from the typical regular scanning grid, which immediately generates both higher speed and the lower fluence experimentally. We also consider downsampling of the detector, showing that oversampling is inherent within convergent beam electron diffraction (CBED) patterns and that detector downsampling does not reduce precision but allows faster experimental data acquisition. Analysis of an experimental atomic resolution yttrium silicide dataset shows that it is possible to recover over 25 dB peak signal-to-noise ratio in the recovered phase using 0.3% of the total data.</p><p><b>Lay abstract</b>: Four-dimensional scanning transmission electron microscopy (4-D STEM) is a powerful technique for characterizing complex nanoscale structures. In this method, a convergent beam electron diffraction pattern (CBED) is acquired at each probe location during the scan of the sample. This means that a 2-dimensional signal is acquired at each 2-D probe location, equating to a 4-D dataset.</p><p>Despite the recent development of fast direct electron detectors, some capable of 100kHz frame rates, the limiting factor for 4-D STEM is acquisition times in the majority of cases, where cameras will typically operate on the order of 2kHz. This means that a raster scan containing 256^2 probe locations can take on the order of 30s, approximately 100-1000 times longer than a conventional STEM imaging technique using monolithic radial detectors. As a result, 4-D STEM acquisitions can be subject to adverse effects such as drift, beam damage, and sample contamination.</p><p>Recent advances in computational imaging techniques for STEM have allowed for faster acquisition speeds by way of acquiring only a random subset of probe locations from the field of view. By doing this, the acquisition time is significantly reduced, in some cases by a factor of 10-100 times. The acquired data is then processed to fill-in or inpaint the missing data, taking advantage of the inherently low-complex signals which can be linearly combined to recover the information.</p><p>In this work, similar methods are demonstrated for the acquisition of 4-D STEM data, where only a random subset of CBED patterns are acquired over the raster scan. We simulate the compressive sensing acquisition method for 4-D STEM and present our findings for a variety of analysis techniques such as ptychography and differential phase contrast. Our results show that acquisition times can be significantly reduced on the order of 100-300 times, therefore improving existing frame rates, as well as further reducing the electron fluence beyond just using a faster camera.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"295 3\",\"pages\":\"278-286\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13315\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13315","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
High-speed 4-dimensional scanning transmission electron microscopy using compressive sensing techniques
Here we show that compressive sensing allows 4-dimensional (4-D) STEM data to be obtained and accurately reconstructed with both high-speed and reduced electron fluence. The methodology needed to achieve these results compared to conventional 4-D approaches requires only that a random subset of probe locations is acquired from the typical regular scanning grid, which immediately generates both higher speed and the lower fluence experimentally. We also consider downsampling of the detector, showing that oversampling is inherent within convergent beam electron diffraction (CBED) patterns and that detector downsampling does not reduce precision but allows faster experimental data acquisition. Analysis of an experimental atomic resolution yttrium silicide dataset shows that it is possible to recover over 25 dB peak signal-to-noise ratio in the recovered phase using 0.3% of the total data.
Lay abstract: Four-dimensional scanning transmission electron microscopy (4-D STEM) is a powerful technique for characterizing complex nanoscale structures. In this method, a convergent beam electron diffraction pattern (CBED) is acquired at each probe location during the scan of the sample. This means that a 2-dimensional signal is acquired at each 2-D probe location, equating to a 4-D dataset.
Despite the recent development of fast direct electron detectors, some capable of 100kHz frame rates, the limiting factor for 4-D STEM is acquisition times in the majority of cases, where cameras will typically operate on the order of 2kHz. This means that a raster scan containing 256^2 probe locations can take on the order of 30s, approximately 100-1000 times longer than a conventional STEM imaging technique using monolithic radial detectors. As a result, 4-D STEM acquisitions can be subject to adverse effects such as drift, beam damage, and sample contamination.
Recent advances in computational imaging techniques for STEM have allowed for faster acquisition speeds by way of acquiring only a random subset of probe locations from the field of view. By doing this, the acquisition time is significantly reduced, in some cases by a factor of 10-100 times. The acquired data is then processed to fill-in or inpaint the missing data, taking advantage of the inherently low-complex signals which can be linearly combined to recover the information.
In this work, similar methods are demonstrated for the acquisition of 4-D STEM data, where only a random subset of CBED patterns are acquired over the raster scan. We simulate the compressive sensing acquisition method for 4-D STEM and present our findings for a variety of analysis techniques such as ptychography and differential phase contrast. Our results show that acquisition times can be significantly reduced on the order of 100-300 times, therefore improving existing frame rates, as well as further reducing the electron fluence beyond just using a faster camera.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.