{"title":"参与 TMTT 和 DMNT 生物合成及亚洲柑橘虫害防御的两种 P450 酶的鉴定和特征描述。","authors":"Xueli Sun, Chunhua Hu, Ganjun Yi, Xinxin Zhang","doi":"10.1093/hr/uhae037","DOIUrl":null,"url":null,"abstract":"<p><p>The homoterpenes (3<i>E</i>)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (<i>E</i>,<i>E</i>)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) are the major herbivore-induced plant volatiles that help in defense directly by acting as repellants and indirectly by recruiting insects' natural enemies. In this study, DMNT and TMTT were confirmed to be emitted from citrus (<i>Citrus sinensis</i>) leaves infested with Asian citrus psyllid (<i>Diaphorina citri</i> Kuwayama; ACP), and two cytochrome P450 (CYP) genes (<i>CsCYP82L1</i> and <i>CsCYP82L2</i>) were newly identified and characterized. Understanding the functions of these genes in citrus defense will help plan strategies to manage huanglongbing caused by <i>Candidatus</i> Liberibacter asiaticus (<i>C</i>Las) and spread by ACP. Quantitative real-time PCR (qPCR) analysis showed that <i>CsCYP82L1</i> and <i>CsCYP82L2</i> were significantly upregulated in citrus leaves after ACP infestation. Yeast recombinant expression and enzyme assays indicated that CsCYP82L1 and CsCYP82L2 convert (<i>E</i>)-nerolidol to DMNT and (<i>E,E</i>)-geranyllinalool to TMTT. However, citrus calluses stably overexpressing <i>CsCYP82L1</i> generated only DMNT, whereas those overexpressing <i>CsCYP82L2</i> produced DMNT and TMTT. Furthermore, ACPs preferred wild-type lemon (<i>Citrus limon</i>) over the <i>CsCYP82L1</i>-overexpressing line in dual-choice feeding assays and mineral oil over TMTT or DMNT in behavioral bioassays. Finally, yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays demonstrated that CsERF017, an AP2/ERF transcription factor, directly bound to the CCGAC motif and activated <i>CsCYP82L1</i>. Moreover, the transient overexpression of <i>CsERF017</i> in lemon leaves upregulated <i>CsCYP82L1</i> in the absence and presence of ACP infestation. These results provide novel insights into homoterpene biosynthesis in <i>C. sinensis</i> and demonstrate the effect of homoterpenes on ACP behavior, laying a foundation to genetically manipulate homoterpene biosynthesis for application in huanglongbing and ACP control.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 4","pages":"uhae037"},"PeriodicalIF":7.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of two P450 enzymes from <i>Citrus sinensis</i> involved in TMTT and DMNT biosyntheses and Asian citrus psyllid defense.\",\"authors\":\"Xueli Sun, Chunhua Hu, Ganjun Yi, Xinxin Zhang\",\"doi\":\"10.1093/hr/uhae037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The homoterpenes (3<i>E</i>)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (<i>E</i>,<i>E</i>)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) are the major herbivore-induced plant volatiles that help in defense directly by acting as repellants and indirectly by recruiting insects' natural enemies. In this study, DMNT and TMTT were confirmed to be emitted from citrus (<i>Citrus sinensis</i>) leaves infested with Asian citrus psyllid (<i>Diaphorina citri</i> Kuwayama; ACP), and two cytochrome P450 (CYP) genes (<i>CsCYP82L1</i> and <i>CsCYP82L2</i>) were newly identified and characterized. Understanding the functions of these genes in citrus defense will help plan strategies to manage huanglongbing caused by <i>Candidatus</i> Liberibacter asiaticus (<i>C</i>Las) and spread by ACP. Quantitative real-time PCR (qPCR) analysis showed that <i>CsCYP82L1</i> and <i>CsCYP82L2</i> were significantly upregulated in citrus leaves after ACP infestation. Yeast recombinant expression and enzyme assays indicated that CsCYP82L1 and CsCYP82L2 convert (<i>E</i>)-nerolidol to DMNT and (<i>E,E</i>)-geranyllinalool to TMTT. However, citrus calluses stably overexpressing <i>CsCYP82L1</i> generated only DMNT, whereas those overexpressing <i>CsCYP82L2</i> produced DMNT and TMTT. Furthermore, ACPs preferred wild-type lemon (<i>Citrus limon</i>) over the <i>CsCYP82L1</i>-overexpressing line in dual-choice feeding assays and mineral oil over TMTT or DMNT in behavioral bioassays. Finally, yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays demonstrated that CsERF017, an AP2/ERF transcription factor, directly bound to the CCGAC motif and activated <i>CsCYP82L1</i>. Moreover, the transient overexpression of <i>CsERF017</i> in lemon leaves upregulated <i>CsCYP82L1</i> in the absence and presence of ACP infestation. These results provide novel insights into homoterpene biosynthesis in <i>C. sinensis</i> and demonstrate the effect of homoterpenes on ACP behavior, laying a foundation to genetically manipulate homoterpene biosynthesis for application in huanglongbing and ACP control.</p>\",\"PeriodicalId\":57479,\"journal\":{\"name\":\"园艺研究(英文)\",\"volume\":\"11 4\",\"pages\":\"uhae037\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"园艺研究(英文)\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhae037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Identification and characterization of two P450 enzymes from Citrus sinensis involved in TMTT and DMNT biosyntheses and Asian citrus psyllid defense.
The homoterpenes (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) are the major herbivore-induced plant volatiles that help in defense directly by acting as repellants and indirectly by recruiting insects' natural enemies. In this study, DMNT and TMTT were confirmed to be emitted from citrus (Citrus sinensis) leaves infested with Asian citrus psyllid (Diaphorina citri Kuwayama; ACP), and two cytochrome P450 (CYP) genes (CsCYP82L1 and CsCYP82L2) were newly identified and characterized. Understanding the functions of these genes in citrus defense will help plan strategies to manage huanglongbing caused by Candidatus Liberibacter asiaticus (CLas) and spread by ACP. Quantitative real-time PCR (qPCR) analysis showed that CsCYP82L1 and CsCYP82L2 were significantly upregulated in citrus leaves after ACP infestation. Yeast recombinant expression and enzyme assays indicated that CsCYP82L1 and CsCYP82L2 convert (E)-nerolidol to DMNT and (E,E)-geranyllinalool to TMTT. However, citrus calluses stably overexpressing CsCYP82L1 generated only DMNT, whereas those overexpressing CsCYP82L2 produced DMNT and TMTT. Furthermore, ACPs preferred wild-type lemon (Citrus limon) over the CsCYP82L1-overexpressing line in dual-choice feeding assays and mineral oil over TMTT or DMNT in behavioral bioassays. Finally, yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays demonstrated that CsERF017, an AP2/ERF transcription factor, directly bound to the CCGAC motif and activated CsCYP82L1. Moreover, the transient overexpression of CsERF017 in lemon leaves upregulated CsCYP82L1 in the absence and presence of ACP infestation. These results provide novel insights into homoterpene biosynthesis in C. sinensis and demonstrate the effect of homoterpenes on ACP behavior, laying a foundation to genetically manipulate homoterpene biosynthesis for application in huanglongbing and ACP control.