硒能抵消金黄色葡萄球菌感染小鼠乳腺中的紧密连接破坏并减轻 NF-κB 介导的炎症反应

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biological Trace Element Research Pub Date : 2025-02-01 Epub Date: 2024-04-27 DOI:10.1007/s12011-024-04210-8
Junjun Liu, Juan Wang, Shiyang Xv, Chongliang Bi
{"title":"硒能抵消金黄色葡萄球菌感染小鼠乳腺中的紧密连接破坏并减轻 NF-κB 介导的炎症反应","authors":"Junjun Liu, Juan Wang, Shiyang Xv, Chongliang Bi","doi":"10.1007/s12011-024-04210-8","DOIUrl":null,"url":null,"abstract":"<p><p>Tight junctions (TJs) are the key determinant of barrier function in the mammary gland, with their disruption being associated with the pathogenesis and progression of mastitis, especially in the case of Staphylococcus aureus (S. aureus) infection. This study investigated whether selenium (Se) could attenuate S. aureus-induced mastitis by inhibiting inflammation and protecting mammary gland TJs in mice. The expression profiles of S. aureus-infected gland tissues derived from the gene expression omnibus dataset were analyzed. We found cytokine production, cell junctions, the nuclear transcription factor-κB (NF-κB) signalling pathway, and inflammatory responses associated with the differentially expressed genes, as revealed by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Se reduced the mRNA expression and production of inflammatory cytokines, including tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and decreased phosphorylation levels of the NF-κB complex. Moreover, Se alleviated structural damage and microvillus injury in mammary glands. Immunohistochemical staining revealed that Se increased the expression of Claudin-3; Western blot analysis revealed increased protein levels of Occludin and Tricellulin in the group supplemented with dietary Se. In summary, Se counteracted TJ disruption and attenuated NF-κB-mediated inflammatory responses in S. aureus-infected mouse mammary glands.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"963-972"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenium Counteracts Tight Junction Disruption and Attenuates the NF-κB-Mediated Inflammatory Response in Staphylococcus aureus-Infected Mouse Mammary Glands.\",\"authors\":\"Junjun Liu, Juan Wang, Shiyang Xv, Chongliang Bi\",\"doi\":\"10.1007/s12011-024-04210-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tight junctions (TJs) are the key determinant of barrier function in the mammary gland, with their disruption being associated with the pathogenesis and progression of mastitis, especially in the case of Staphylococcus aureus (S. aureus) infection. This study investigated whether selenium (Se) could attenuate S. aureus-induced mastitis by inhibiting inflammation and protecting mammary gland TJs in mice. The expression profiles of S. aureus-infected gland tissues derived from the gene expression omnibus dataset were analyzed. We found cytokine production, cell junctions, the nuclear transcription factor-κB (NF-κB) signalling pathway, and inflammatory responses associated with the differentially expressed genes, as revealed by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Se reduced the mRNA expression and production of inflammatory cytokines, including tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and decreased phosphorylation levels of the NF-κB complex. Moreover, Se alleviated structural damage and microvillus injury in mammary glands. Immunohistochemical staining revealed that Se increased the expression of Claudin-3; Western blot analysis revealed increased protein levels of Occludin and Tricellulin in the group supplemented with dietary Se. In summary, Se counteracted TJ disruption and attenuated NF-κB-mediated inflammatory responses in S. aureus-infected mouse mammary glands.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"963-972\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04210-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04210-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

紧密连接(TJ)是决定乳腺屏障功能的关键因素,其破坏与乳腺炎的发病和发展有关,尤其是在金黄色葡萄球菌(S. aureus)感染的情况下。本研究探讨了硒(Se)是否能通过抑制炎症和保护小鼠乳腺TJ来减轻金黄色葡萄球菌诱发的乳腺炎。研究分析了从基因表达总库数据集中获得的金黄色葡萄球菌感染的腺体组织的表达谱。通过基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析,我们发现细胞因子的产生、细胞连接、核转录因子-κB(NF-κB)信号通路和炎症反应与差异表达基因有关。Se 减少了包括肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)在内的炎性细胞因子的 mRNA 表达和产生,并降低了 NF-κB 复合物的磷酸化水平。此外,Se 还能减轻乳腺结构损伤和微绒毛损伤。免疫组化染色显示,Se 增加了 Claudin-3 的表达;Western 印迹分析显示,膳食中添加 Se 的组别中,Occludin 和 Tricellulin 蛋白水平增加。总之,在金黄色葡萄球菌感染的小鼠乳腺中,Se 抵消了 TJ 破坏并减轻了 NF-κB 介导的炎症反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selenium Counteracts Tight Junction Disruption and Attenuates the NF-κB-Mediated Inflammatory Response in Staphylococcus aureus-Infected Mouse Mammary Glands.

Tight junctions (TJs) are the key determinant of barrier function in the mammary gland, with their disruption being associated with the pathogenesis and progression of mastitis, especially in the case of Staphylococcus aureus (S. aureus) infection. This study investigated whether selenium (Se) could attenuate S. aureus-induced mastitis by inhibiting inflammation and protecting mammary gland TJs in mice. The expression profiles of S. aureus-infected gland tissues derived from the gene expression omnibus dataset were analyzed. We found cytokine production, cell junctions, the nuclear transcription factor-κB (NF-κB) signalling pathway, and inflammatory responses associated with the differentially expressed genes, as revealed by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Se reduced the mRNA expression and production of inflammatory cytokines, including tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and decreased phosphorylation levels of the NF-κB complex. Moreover, Se alleviated structural damage and microvillus injury in mammary glands. Immunohistochemical staining revealed that Se increased the expression of Claudin-3; Western blot analysis revealed increased protein levels of Occludin and Tricellulin in the group supplemented with dietary Se. In summary, Se counteracted TJ disruption and attenuated NF-κB-mediated inflammatory responses in S. aureus-infected mouse mammary glands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
期刊最新文献
Integrated In-silico and In-vivo Assessments of Betaine's Effect on the Hypothalamic-Pituitary-Testicular (HPT) Axis in Fluoride-Treated Rats. Investigation of the Effects of Selenium Against 4-Nonylphenol-induced Toxicity in Rat Testis. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Trace Element Chromium-D-Phenylalanine Complex: Anti-Inflammatory and Antioxidant Insights from In Vivo and In Silico Studies. Correction: Impact of Trace Mineral Source and Phytase Supplementation on Prececal Phytate Degradation and Mineral Digestibility, Bone Mineralization, and Tissue Gene Expression in Broiler Chickens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1