低剂量电离辐射的 DNA 损伤信号预测。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL International journal of molecular medicine Pub Date : 2024-06-01 Epub Date: 2024-05-02 DOI:10.3892/ijmm.2024.5380
Jeong-In Park, Seung-Youn Jung, Kyung-Hee Song, Dong-Hyeon Lee, Jiyeon Ahn, Sang-Gu Hwang, In-Su Jung, Dae-Seog Lim, Jie-Young Song
{"title":"低剂量电离辐射的 DNA 损伤信号预测。","authors":"Jeong-In Park, Seung-Youn Jung, Kyung-Hee Song, Dong-Hyeon Lee, Jiyeon Ahn, Sang-Gu Hwang, In-Su Jung, Dae-Seog Lim, Jie-Young Song","doi":"10.3892/ijmm.2024.5380","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an <i>in vivo</i> model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093554/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive DNA damage signaling for low‑dose ionizing radiation.\",\"authors\":\"Jeong-In Park, Seung-Youn Jung, Kyung-Hee Song, Dong-Hyeon Lee, Jiyeon Ahn, Sang-Gu Hwang, In-Su Jung, Dae-Seog Lim, Jie-Young Song\",\"doi\":\"10.3892/ijmm.2024.5380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an <i>in vivo</i> model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"53 6\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093554/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2024.5380\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5380","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

许多研究都试图开发辐射反应生物标记,以便在辐射领域广泛而直接地应用。本研究在公共数据库的基础上,选择了几种参与 DNA 损伤修复反应、细胞周期调控和细胞因子信号转导的分子作为有希望的低剂量辐射敏感标记候选分子。对 HuT 78 和 IM-9 细胞系进行了浓度依赖性辐照,并使用 Western 印迹分析法对这些分子的表达进行了分析。值得注意的是,共济失调毛细血管扩张症突变体(ATM)、检查点激酶 2(CHK2)、p53 和 H2A 组蛋白家族成员 X(H2AX)的活化以浓度依赖的方式显著增加,这在人类外周血单核细胞中也观察到了。为了确定西奴巴金作为 ATM 和 CHK2 激活剂的辐射保护作用,我们使用亚致死剂量和致死剂量对辐照小鼠进行了体内模型试验。使用西奴巴金治疗后,亚致死剂量辐照小鼠的骨髓细胞数量有所增加,致死剂量辐照小鼠的存活时间略有延长,但差异无统计学意义。因此,我们评估了 KU60019、BML-277、pifithrin-α 和 nutlin-3a 调节辐射诱导的细胞死亡的能力。BML-277 的使用降低了辐射诱导的 p-CHK2 和 γH2AX 水平,减轻了辐射诱导的细胞凋亡。总之,本研究提供了一种基于生物辐射敏感性标志物分析开发候选药物的新方法。这些标志物有望用于预测辐照和评估相关的人类风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive DNA damage signaling for low‑dose ionizing radiation.

Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
期刊最新文献
[Retracted] PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo. Adrenic acid: A promising biomarker and therapeutic target (Review). Role of DNA methylation transferase in urinary system diseases: From basic to clinical perspectives (Review). [Corrigendum] A regulation loop between Nrf1α and MRTF‑A controls migration and invasion in MDA‑MB‑231 breast cancer cells. Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1