MicroPredict:仅使用 16S 扩增片段测序数据预测全枪元基因组数据的物种级分类丰度。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genomics Pub Date : 2024-06-01 Epub Date: 2024-05-03 DOI:10.1007/s13258-024-01514-w
Chloe Soohyun Jang, Hakin Kim, Donghyun Kim, Buhm Han
{"title":"MicroPredict:仅使用 16S 扩增片段测序数据预测全枪元基因组数据的物种级分类丰度。","authors":"Chloe Soohyun Jang, Hakin Kim, Donghyun Kim, Buhm Han","doi":"10.1007/s13258-024-01514-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The importance of the human microbiome in the analysis of various diseases is emerging. The two main methods used to profile the human microbiome are 16S rRNA gene sequencing (16S sequencing) and whole-genome shotgun sequencing (WGS). Owing to the full coverage of the genome in sequencing, WGS has multiple advantages over 16S sequencing, including higher taxonomic profiling resolution at the species-level and functional profiling analysis. However, 16S sequencing remains widely used because of its relatively low cost. Although WGS is the standard method for obtaining accurate species-level data, we found that 16S sequencing data contained rich information to predict high-resolution species-level abundances with reasonable accuracy.</p><p><strong>Objective: </strong>In this study, we proposed MicroPredict, a method for accurately predicting WGS-comparable species-level abundance data using 16S taxonomic profile data.</p><p><strong>Methods: </strong>We employed a mixed model using two key strategies: (1) modeling both sample- and species-specific information for predicting WGS abundances, and (2) accounting for the possible correlations among different species.</p><p><strong>Results: </strong>We found that MicroPredict outperformed the other machine learning methods.</p><p><strong>Conclusion: </strong>We expect that our approach will help researchers accurately approximate the species-level abundances of microbiome profiles in datasets for which only cost-effective 16S sequencing has been applied.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"701-712"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102407/pdf/","citationCount":"0","resultStr":"{\"title\":\"MicroPredict: predicting species-level taxonomic abundance of whole-shotgun metagenomic data using only 16S amplicon sequencing data.\",\"authors\":\"Chloe Soohyun Jang, Hakin Kim, Donghyun Kim, Buhm Han\",\"doi\":\"10.1007/s13258-024-01514-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The importance of the human microbiome in the analysis of various diseases is emerging. The two main methods used to profile the human microbiome are 16S rRNA gene sequencing (16S sequencing) and whole-genome shotgun sequencing (WGS). Owing to the full coverage of the genome in sequencing, WGS has multiple advantages over 16S sequencing, including higher taxonomic profiling resolution at the species-level and functional profiling analysis. However, 16S sequencing remains widely used because of its relatively low cost. Although WGS is the standard method for obtaining accurate species-level data, we found that 16S sequencing data contained rich information to predict high-resolution species-level abundances with reasonable accuracy.</p><p><strong>Objective: </strong>In this study, we proposed MicroPredict, a method for accurately predicting WGS-comparable species-level abundance data using 16S taxonomic profile data.</p><p><strong>Methods: </strong>We employed a mixed model using two key strategies: (1) modeling both sample- and species-specific information for predicting WGS abundances, and (2) accounting for the possible correlations among different species.</p><p><strong>Results: </strong>We found that MicroPredict outperformed the other machine learning methods.</p><p><strong>Conclusion: </strong>We expect that our approach will help researchers accurately approximate the species-level abundances of microbiome profiles in datasets for which only cost-effective 16S sequencing has been applied.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"701-712\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01514-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01514-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:人类微生物组在分析各种疾病中的重要性正在显现。用于分析人类微生物组的两种主要方法是 16S rRNA 基因测序(16S 测序)和全基因组枪式测序(WGS)。与 16S 测序法相比,WGS 具有基因组全覆盖的优势,包括更高的物种级分类剖析分辨率和功能剖析分析。然而,16S 测序因其相对低廉的成本仍被广泛使用。虽然 WGS 是获得准确物种水平数据的标准方法,但我们发现 16S 测序数据包含丰富的信息,可以合理准确地预测高分辨率的物种水平丰度:在这项研究中,我们提出了一种利用 16S 分类特征数据准确预测 WGS 可比物种级丰度数据的方法 MicroPredict:我们采用了一个混合模型,使用了两个关键策略:(1)为预测 WGS 丰度建立样本和物种特异性信息模型;(2)考虑不同物种之间可能存在的相关性:结果:我们发现 MicroPredict 的表现优于其他机器学习方法:我们希望我们的方法能帮助研究人员在只应用了经济有效的 16S 测序的数据集中准确地近似计算微生物组图谱的物种级丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MicroPredict: predicting species-level taxonomic abundance of whole-shotgun metagenomic data using only 16S amplicon sequencing data.

Background: The importance of the human microbiome in the analysis of various diseases is emerging. The two main methods used to profile the human microbiome are 16S rRNA gene sequencing (16S sequencing) and whole-genome shotgun sequencing (WGS). Owing to the full coverage of the genome in sequencing, WGS has multiple advantages over 16S sequencing, including higher taxonomic profiling resolution at the species-level and functional profiling analysis. However, 16S sequencing remains widely used because of its relatively low cost. Although WGS is the standard method for obtaining accurate species-level data, we found that 16S sequencing data contained rich information to predict high-resolution species-level abundances with reasonable accuracy.

Objective: In this study, we proposed MicroPredict, a method for accurately predicting WGS-comparable species-level abundance data using 16S taxonomic profile data.

Methods: We employed a mixed model using two key strategies: (1) modeling both sample- and species-specific information for predicting WGS abundances, and (2) accounting for the possible correlations among different species.

Results: We found that MicroPredict outperformed the other machine learning methods.

Conclusion: We expect that our approach will help researchers accurately approximate the species-level abundances of microbiome profiles in datasets for which only cost-effective 16S sequencing has been applied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
期刊最新文献
miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells. Population genetics analysis based on mitochondrial cytochrome c oxidase subunit I (CO1) gene sequences of Cottus koreanus in South Korea. Potential role of ARG1 c.57G > A variant in Argininemia. A combination of upstream alleles involved in rice heading hastens natural long-day responses. Identification and expression analysis of the SPL gene family during flower bud differentiation in Rhododendron molle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1