Giovanna de Carvalho, Walter Sepúlveda-Loyola, Luana Oliveira de Lima, Stheace Kelly Fernandes Szezerbaty, Regina Célia Poli-Frederico, Héctor Gutiérrez-Espinoza, Juan José Valenzuela-Fuenzalida, Vanessa Suziane Probst
{"title":"IGF-1 和 IGF-2 基因型与慢性阻塞性肺病患者呼吸肌强度的关系:一项横断面研究。","authors":"Giovanna de Carvalho, Walter Sepúlveda-Loyola, Luana Oliveira de Lima, Stheace Kelly Fernandes Szezerbaty, Regina Célia Poli-Frederico, Héctor Gutiérrez-Espinoza, Juan José Valenzuela-Fuenzalida, Vanessa Suziane Probst","doi":"10.5867/medwave.2024.03.2783","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chronic obstructive pulmonary disease is a systemic disease characterized not only by respiratory symptoms but also by physical deconditioning and muscle weakness. One prominent manifestation of this disease is the decline in respiratory muscle strength. Previous studies have linked the genotypes of insulin-like growth factor 1 and 2 (IGF-1 and IGF-2) to muscle weakness in other populations without this disease. However, there is a notable knowledge gap regarding the biological mechanisms underlying respiratory muscle weakness, particularly the role of IGF-1 and IGF-2 genotypes in this pulmonary disease. Therefore, this study aimed to investigate, for the first time, the association between IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with chronic obstructive pulmonary disease. In addition, we analyzed the relationship between oxidative stress, chronic inflammation, and vitamin D with respiratory muscle strength.</p><p><strong>Methods: </strong>A cross sectional study with 61 individuals with chronic obstructive pulmonary disease. Polymerase chain reaction of gene polymorphisms IGF-1 (rs35767) and IGF-2 (rs3213221) was analyzed. Other variables, related to oxidative stress, inflammation and Vitamin D were dosed from peripheral blood. Maximal inspiratory and expiratory pressure were measured.</p><p><strong>Results: </strong>The genetic polymorphisms were associated with respiratory muscle strength ( 3.0 and 3.5; = 0.57). Specific genotypes of IGF-1 and IGF-2 presented lower maximal inspiratory and expiratory pressure (<0.05 for all). Oxidative stress, inflammatory biomarkers, and vitamin D were not associated with respiratory muscle strength.</p><p><strong>Conclusion: </strong>The polymorphisms of IGF-1 and IGF-2 displayed stronger correlations with respiratory muscle strength compared to blood biomarkers in patients with chronic obstructive pulmonary disease. Specific genotypes of IGF-1 and IGF-2 were associated with reduced respiratory muscle strength in this population.</p>","PeriodicalId":18597,"journal":{"name":"Medwave","volume":"24 3","pages":"e2783"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with COPD: A cross-sectional study.\",\"authors\":\"Giovanna de Carvalho, Walter Sepúlveda-Loyola, Luana Oliveira de Lima, Stheace Kelly Fernandes Szezerbaty, Regina Célia Poli-Frederico, Héctor Gutiérrez-Espinoza, Juan José Valenzuela-Fuenzalida, Vanessa Suziane Probst\",\"doi\":\"10.5867/medwave.2024.03.2783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Chronic obstructive pulmonary disease is a systemic disease characterized not only by respiratory symptoms but also by physical deconditioning and muscle weakness. One prominent manifestation of this disease is the decline in respiratory muscle strength. Previous studies have linked the genotypes of insulin-like growth factor 1 and 2 (IGF-1 and IGF-2) to muscle weakness in other populations without this disease. However, there is a notable knowledge gap regarding the biological mechanisms underlying respiratory muscle weakness, particularly the role of IGF-1 and IGF-2 genotypes in this pulmonary disease. Therefore, this study aimed to investigate, for the first time, the association between IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with chronic obstructive pulmonary disease. In addition, we analyzed the relationship between oxidative stress, chronic inflammation, and vitamin D with respiratory muscle strength.</p><p><strong>Methods: </strong>A cross sectional study with 61 individuals with chronic obstructive pulmonary disease. Polymerase chain reaction of gene polymorphisms IGF-1 (rs35767) and IGF-2 (rs3213221) was analyzed. Other variables, related to oxidative stress, inflammation and Vitamin D were dosed from peripheral blood. Maximal inspiratory and expiratory pressure were measured.</p><p><strong>Results: </strong>The genetic polymorphisms were associated with respiratory muscle strength ( 3.0 and 3.5; = 0.57). Specific genotypes of IGF-1 and IGF-2 presented lower maximal inspiratory and expiratory pressure (<0.05 for all). Oxidative stress, inflammatory biomarkers, and vitamin D were not associated with respiratory muscle strength.</p><p><strong>Conclusion: </strong>The polymorphisms of IGF-1 and IGF-2 displayed stronger correlations with respiratory muscle strength compared to blood biomarkers in patients with chronic obstructive pulmonary disease. Specific genotypes of IGF-1 and IGF-2 were associated with reduced respiratory muscle strength in this population.</p>\",\"PeriodicalId\":18597,\"journal\":{\"name\":\"Medwave\",\"volume\":\"24 3\",\"pages\":\"e2783\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medwave\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5867/medwave.2024.03.2783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medwave","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5867/medwave.2024.03.2783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Association of IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with COPD: A cross-sectional study.
Introduction: Chronic obstructive pulmonary disease is a systemic disease characterized not only by respiratory symptoms but also by physical deconditioning and muscle weakness. One prominent manifestation of this disease is the decline in respiratory muscle strength. Previous studies have linked the genotypes of insulin-like growth factor 1 and 2 (IGF-1 and IGF-2) to muscle weakness in other populations without this disease. However, there is a notable knowledge gap regarding the biological mechanisms underlying respiratory muscle weakness, particularly the role of IGF-1 and IGF-2 genotypes in this pulmonary disease. Therefore, this study aimed to investigate, for the first time, the association between IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with chronic obstructive pulmonary disease. In addition, we analyzed the relationship between oxidative stress, chronic inflammation, and vitamin D with respiratory muscle strength.
Methods: A cross sectional study with 61 individuals with chronic obstructive pulmonary disease. Polymerase chain reaction of gene polymorphisms IGF-1 (rs35767) and IGF-2 (rs3213221) was analyzed. Other variables, related to oxidative stress, inflammation and Vitamin D were dosed from peripheral blood. Maximal inspiratory and expiratory pressure were measured.
Results: The genetic polymorphisms were associated with respiratory muscle strength ( 3.0 and 3.5; = 0.57). Specific genotypes of IGF-1 and IGF-2 presented lower maximal inspiratory and expiratory pressure (<0.05 for all). Oxidative stress, inflammatory biomarkers, and vitamin D were not associated with respiratory muscle strength.
Conclusion: The polymorphisms of IGF-1 and IGF-2 displayed stronger correlations with respiratory muscle strength compared to blood biomarkers in patients with chronic obstructive pulmonary disease. Specific genotypes of IGF-1 and IGF-2 were associated with reduced respiratory muscle strength in this population.
期刊介绍:
Medwave is a peer-reviewed, biomedical and public health journal. Since its foundation in 2001 (Volume 1) it has always been an online only, open access publication that does not charge subscription or reader fees. Since January 2011 (Volume 11, Number 1), all articles are peer-reviewed. Without losing sight of the importance of evidence-based approach and methodological soundness, the journal accepts for publication articles that focus on providing updates for clinical practice, review and analysis articles on topics such as ethics, public health and health policy; clinical, social and economic health determinants; clinical and health research findings from all of the major disciplines of medicine, medical science and public health. The journal does not publish basic science manuscripts or experiments conducted on animals. Until March 2013, Medwave was publishing 11-12 numbers a year. Each issue would be posted on the homepage on day 1 of each month, except for Chile’s summer holiday when the issue would cover two months. Starting from April 2013, Medwave adopted the continuous mode of publication, which means that the copyedited accepted articles are posted on the journal’s homepage as they are ready. They are then collated in the respective issue and included in the Past Issues section.