Shorouk Elmorshdy Elsaeed Mohammed Elmorshdy, Gehan Ahmed Shaker, Zienab Helmy Eldken, Mahmoud Abdelbadie Salem, Amira Awadalla, Hany Mahmoud Abdel Shakour, Mohammed Elmahdy El Hosiny Sarhan, Abdelaziz Mohamed Hussein
{"title":"纳米氧化铈颗粒对多柔比星诱导的心肌病代谢、凋亡、自噬和抗氧化变化的影响:可能的内在机制","authors":"Shorouk Elmorshdy Elsaeed Mohammed Elmorshdy, Gehan Ahmed Shaker, Zienab Helmy Eldken, Mahmoud Abdelbadie Salem, Amira Awadalla, Hany Mahmoud Abdel Shakour, Mohammed Elmahdy El Hosiny Sarhan, Abdelaziz Mohamed Hussein","doi":"10.61186/rbmb.12.3.495","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In the current study, the effects of cerium oxide nanoparticles (nanocerium; NC) on doxorubicin (DOX)-induced cardiomyopathy and its possible underlying mechanisms were addressed.</p><p><strong>Methods: </strong>32 adult male rats were allocated into 4 groups; i) control group, ii) NC group; rats received NC (0.2 mg/kg, i.p., daily), iii) DOX group; rats received DOX 4 mg/kg (2 injections with a 14-day interval), and iv) DOX+NC group as DOX but rats received NC. At the end of the experiment, ECG and ECHO recordings and assessments of the levels of cardiac enzymes (CK-MB, LDH), and myocardial oxidative stress (MDA, catalase, and GSH), the expression of LC3 and beclin1 (markers of autophagy), caspase3 (marker of apoptosis) by immunohistochemistry, the expression of acetyl-CoA carboxylase alpha (ACCA) by PCR, and 5'adenosine monophosphate-activated protein kinase (AMPK) levels in the heart tissues were performed.</p><p><strong>Results: </strong>The DOX group displayed a prolonged corrected QT interval, an increase in cardiac enzymes (CK-MB and LDH), myocardial oxidative stress (high MDA with low catalase and GSH), expression of ACCA, caspase-3, beclin1, and LC3 in myocardial tissues, with reduction in myocardial AMPK levels, and myocardial contractility (low ejection fraction, and fractional shortening). On the other hand, administration of NC with DOX resulted in significant improvement of all studied parameters.</p><p><strong>Conclusion: </strong>NC offers a cardioprotective effect against DOX-induced cardiomyopathy. This effect might be due to its antioxidant and antiapoptotic effects as well as to the modulation of autophagy and metabolic dysfunctions induced by DOX in the heart tissues.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015933/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Cerium Oxide Nanoparticles on Metabolic, Apoptotic, Autophagic and Antioxidant Changes in Doxorubicin-Induced Cardiomyopathy: Possible Underlying Mechanisms.\",\"authors\":\"Shorouk Elmorshdy Elsaeed Mohammed Elmorshdy, Gehan Ahmed Shaker, Zienab Helmy Eldken, Mahmoud Abdelbadie Salem, Amira Awadalla, Hany Mahmoud Abdel Shakour, Mohammed Elmahdy El Hosiny Sarhan, Abdelaziz Mohamed Hussein\",\"doi\":\"10.61186/rbmb.12.3.495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In the current study, the effects of cerium oxide nanoparticles (nanocerium; NC) on doxorubicin (DOX)-induced cardiomyopathy and its possible underlying mechanisms were addressed.</p><p><strong>Methods: </strong>32 adult male rats were allocated into 4 groups; i) control group, ii) NC group; rats received NC (0.2 mg/kg, i.p., daily), iii) DOX group; rats received DOX 4 mg/kg (2 injections with a 14-day interval), and iv) DOX+NC group as DOX but rats received NC. At the end of the experiment, ECG and ECHO recordings and assessments of the levels of cardiac enzymes (CK-MB, LDH), and myocardial oxidative stress (MDA, catalase, and GSH), the expression of LC3 and beclin1 (markers of autophagy), caspase3 (marker of apoptosis) by immunohistochemistry, the expression of acetyl-CoA carboxylase alpha (ACCA) by PCR, and 5'adenosine monophosphate-activated protein kinase (AMPK) levels in the heart tissues were performed.</p><p><strong>Results: </strong>The DOX group displayed a prolonged corrected QT interval, an increase in cardiac enzymes (CK-MB and LDH), myocardial oxidative stress (high MDA with low catalase and GSH), expression of ACCA, caspase-3, beclin1, and LC3 in myocardial tissues, with reduction in myocardial AMPK levels, and myocardial contractility (low ejection fraction, and fractional shortening). On the other hand, administration of NC with DOX resulted in significant improvement of all studied parameters.</p><p><strong>Conclusion: </strong>NC offers a cardioprotective effect against DOX-induced cardiomyopathy. This effect might be due to its antioxidant and antiapoptotic effects as well as to the modulation of autophagy and metabolic dysfunctions induced by DOX in the heart tissues.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015933/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/rbmb.12.3.495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.12.3.495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impact of Cerium Oxide Nanoparticles on Metabolic, Apoptotic, Autophagic and Antioxidant Changes in Doxorubicin-Induced Cardiomyopathy: Possible Underlying Mechanisms.
Background: In the current study, the effects of cerium oxide nanoparticles (nanocerium; NC) on doxorubicin (DOX)-induced cardiomyopathy and its possible underlying mechanisms were addressed.
Methods: 32 adult male rats were allocated into 4 groups; i) control group, ii) NC group; rats received NC (0.2 mg/kg, i.p., daily), iii) DOX group; rats received DOX 4 mg/kg (2 injections with a 14-day interval), and iv) DOX+NC group as DOX but rats received NC. At the end of the experiment, ECG and ECHO recordings and assessments of the levels of cardiac enzymes (CK-MB, LDH), and myocardial oxidative stress (MDA, catalase, and GSH), the expression of LC3 and beclin1 (markers of autophagy), caspase3 (marker of apoptosis) by immunohistochemistry, the expression of acetyl-CoA carboxylase alpha (ACCA) by PCR, and 5'adenosine monophosphate-activated protein kinase (AMPK) levels in the heart tissues were performed.
Results: The DOX group displayed a prolonged corrected QT interval, an increase in cardiac enzymes (CK-MB and LDH), myocardial oxidative stress (high MDA with low catalase and GSH), expression of ACCA, caspase-3, beclin1, and LC3 in myocardial tissues, with reduction in myocardial AMPK levels, and myocardial contractility (low ejection fraction, and fractional shortening). On the other hand, administration of NC with DOX resulted in significant improvement of all studied parameters.
Conclusion: NC offers a cardioprotective effect against DOX-induced cardiomyopathy. This effect might be due to its antioxidant and antiapoptotic effects as well as to the modulation of autophagy and metabolic dysfunctions induced by DOX in the heart tissues.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.