利用深度学习对人类 265 种细胞类型进行单细胞类型注释。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-04-08 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae054
Sherry Dong, Kaiwen Deng, Xiuzhen Huang
{"title":"利用深度学习对人类 265 种细胞类型进行单细胞类型注释。","authors":"Sherry Dong, Kaiwen Deng, Xiuzhen Huang","doi":"10.1093/bioadv/vbae054","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Annotating cell types is a challenging yet essential task in analyzing single-cell RNA sequencing data. However, due to the lack of a gold standard, it is difficult to evaluate the algorithms fairly and an overfitting algorithm may be favored in benchmarks. To address this challenge, we developed a deep learning-based single-cell type prediction tool that assigns the cell type to 265 different cell types for humans, based on data from approximately five million cells.</p><p><strong>Results: </strong>We achieved a median area under the ROC curve (AUC) of 0.93 when evaluated across datasets. We found that inconsistent labeling in the existing database generated by different labs contributed to the mistakes of the model. Therefore, we used cell ontology to correct the annotations and retrained the model, which resulted in 0.971 median AUC. Our study reveals a limiting factor of the accuracy one may achieve with the current database annotation and points to the solutions towards an algorithm-based correction of the gold standard for future automated cell annotation approaches.</p><p><strong>Availability and implementation: </strong>The code is available at: https://github.com/SherrySDong/Hierarchical-Correction-Improves-Automated-Single-cell-Type-Annotation. Data used in this study are listed in Supplementary Table S1 and are retrievable at the CZI database.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae054"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell type annotation with deep learning in 265 cell types for humans.\",\"authors\":\"Sherry Dong, Kaiwen Deng, Xiuzhen Huang\",\"doi\":\"10.1093/bioadv/vbae054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Annotating cell types is a challenging yet essential task in analyzing single-cell RNA sequencing data. However, due to the lack of a gold standard, it is difficult to evaluate the algorithms fairly and an overfitting algorithm may be favored in benchmarks. To address this challenge, we developed a deep learning-based single-cell type prediction tool that assigns the cell type to 265 different cell types for humans, based on data from approximately five million cells.</p><p><strong>Results: </strong>We achieved a median area under the ROC curve (AUC) of 0.93 when evaluated across datasets. We found that inconsistent labeling in the existing database generated by different labs contributed to the mistakes of the model. Therefore, we used cell ontology to correct the annotations and retrained the model, which resulted in 0.971 median AUC. Our study reveals a limiting factor of the accuracy one may achieve with the current database annotation and points to the solutions towards an algorithm-based correction of the gold standard for future automated cell annotation approaches.</p><p><strong>Availability and implementation: </strong>The code is available at: https://github.com/SherrySDong/Hierarchical-Correction-Improves-Automated-Single-cell-Type-Annotation. Data used in this study are listed in Supplementary Table S1 and are retrievable at the CZI database.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae054\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机在分析单细胞 RNA 测序数据时,标注细胞类型是一项具有挑战性但又必不可少的任务。然而,由于缺乏黄金标准,很难对算法进行公平的评估,而且在基准测试中,过拟合算法可能会受到青睐。为了应对这一挑战,我们开发了一种基于深度学习的单细胞类型预测工具,根据来自约 500 万个细胞的数据,为人类的 265 种不同细胞类型分配细胞类型:在跨数据集评估时,我们的 ROC 曲线下面积(AUC)中位数达到了 0.93。我们发现,不同实验室生成的现有数据库中不一致的标记导致了模型的错误。因此,我们使用细胞本体来校正注释并重新训练模型,结果 AUC 中位数达到了 0.971。我们的研究揭示了当前数据库注释所能达到的精确度的限制因素,并为未来的自动细胞注释方法指出了基于算法的金标准校正的解决方案:代码见:https://github.com/SherrySDong/Hierarchical-Correction-Improves-Automated-Single-cell-Type-Annotation。本研究使用的数据列于补充表 S1,可在 CZI 数据库中检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-cell type annotation with deep learning in 265 cell types for humans.

Motivation: Annotating cell types is a challenging yet essential task in analyzing single-cell RNA sequencing data. However, due to the lack of a gold standard, it is difficult to evaluate the algorithms fairly and an overfitting algorithm may be favored in benchmarks. To address this challenge, we developed a deep learning-based single-cell type prediction tool that assigns the cell type to 265 different cell types for humans, based on data from approximately five million cells.

Results: We achieved a median area under the ROC curve (AUC) of 0.93 when evaluated across datasets. We found that inconsistent labeling in the existing database generated by different labs contributed to the mistakes of the model. Therefore, we used cell ontology to correct the annotations and retrained the model, which resulted in 0.971 median AUC. Our study reveals a limiting factor of the accuracy one may achieve with the current database annotation and points to the solutions towards an algorithm-based correction of the gold standard for future automated cell annotation approaches.

Availability and implementation: The code is available at: https://github.com/SherrySDong/Hierarchical-Correction-Improves-Automated-Single-cell-Type-Annotation. Data used in this study are listed in Supplementary Table S1 and are retrievable at the CZI database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
The combined focal loss and dice loss function improves the segmentation of beta-sheets in medium-resolution cryo-electron-microscopy density maps. MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data. Conditional flux balance analysis toolbox for python: application to research metabolism in cyclic environments. LUKB: preparing local UK Biobank data for analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1