{"title":"基于文本挖掘的抗癌药物反应预测特征选择。","authors":"Grace Wu, Arvin Zaker, Amirhosein Ebrahimi, Shivanshi Tripathi, Arvind Singh Mer","doi":"10.1093/bioadv/vbae047","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Predicting anticancer treatment response from baseline genomic data is a critical obstacle in personalized medicine. Machine learning methods are commonly used for predicting drug response from gene expression data. In the process of constructing these machine learning models, one of the most significant challenges is identifying appropriate features among a massive number of genes.</p><p><strong>Results: </strong>In this study, we utilize features (genes) extracted using the text-mining of scientific literatures. Using two independent cancer pharmacogenomic datasets, we demonstrate that text-mining-based features outperform traditional feature selection techniques in machine learning tasks. In addition, our analysis reveals that text-mining feature-based machine learning models trained on <i>in vitro</i> data also perform well when predicting the response of <i>in vivo</i> cancer models. Our results demonstrate that text-mining-based feature selection is an easy to implement approach that is suitable for building machine learning models for anticancer drug response prediction.</p><p><strong>Availability and implementation: </strong>https://github.com/merlab/text_features.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae047"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009020/pdf/","citationCount":"0","resultStr":"{\"title\":\"Text-mining-based feature selection for anticancer drug response prediction.\",\"authors\":\"Grace Wu, Arvin Zaker, Amirhosein Ebrahimi, Shivanshi Tripathi, Arvind Singh Mer\",\"doi\":\"10.1093/bioadv/vbae047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Predicting anticancer treatment response from baseline genomic data is a critical obstacle in personalized medicine. Machine learning methods are commonly used for predicting drug response from gene expression data. In the process of constructing these machine learning models, one of the most significant challenges is identifying appropriate features among a massive number of genes.</p><p><strong>Results: </strong>In this study, we utilize features (genes) extracted using the text-mining of scientific literatures. Using two independent cancer pharmacogenomic datasets, we demonstrate that text-mining-based features outperform traditional feature selection techniques in machine learning tasks. In addition, our analysis reveals that text-mining feature-based machine learning models trained on <i>in vitro</i> data also perform well when predicting the response of <i>in vivo</i> cancer models. Our results demonstrate that text-mining-based feature selection is an easy to implement approach that is suitable for building machine learning models for anticancer drug response prediction.</p><p><strong>Availability and implementation: </strong>https://github.com/merlab/text_features.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae047\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Text-mining-based feature selection for anticancer drug response prediction.
Motivation: Predicting anticancer treatment response from baseline genomic data is a critical obstacle in personalized medicine. Machine learning methods are commonly used for predicting drug response from gene expression data. In the process of constructing these machine learning models, one of the most significant challenges is identifying appropriate features among a massive number of genes.
Results: In this study, we utilize features (genes) extracted using the text-mining of scientific literatures. Using two independent cancer pharmacogenomic datasets, we demonstrate that text-mining-based features outperform traditional feature selection techniques in machine learning tasks. In addition, our analysis reveals that text-mining feature-based machine learning models trained on in vitro data also perform well when predicting the response of in vivo cancer models. Our results demonstrate that text-mining-based feature selection is an easy to implement approach that is suitable for building machine learning models for anticancer drug response prediction.
Availability and implementation: https://github.com/merlab/text_features.