旗孢子菌对纤孢素的分布和螯合作用。

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-08-01 DOI:10.1094/PHYTO-09-23-0310-R
Maria Izabel Costa de Novaes, Clark Robertson, Vinson P Doyle, David Burk, Sara Thomas-Sharma
{"title":"旗孢子菌对纤孢素的分布和螯合作用。","authors":"Maria Izabel Costa de Novaes, Clark Robertson, Vinson P Doyle, David Burk, Sara Thomas-Sharma","doi":"10.1094/PHYTO-09-23-0310-R","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-pathogenic fungi produce toxins as virulence factors in many plant diseases. In Cercospora leaf blight of soybean caused by <i>Cercospora</i> cf. <i>flagellaris</i>, symptoms are a consequence of the production of a perylenequinone toxin, cercosporin, which is light-activated to produce damaging reactive oxygen species. Cercosporin is universally toxic to cells, except to the cells of the producer. The current model of self-resistance to cercosporin is largely attributed to the maintenance of cercosporin in a chemically reduced state inside hyphae, unassociated with cellular organelles. However, in another perylenequinone-producing fungus, <i>Phaeosphaeria</i> sp., the toxin was specifically sequestered inside lipid droplets (LDs) to prevent reactive oxygen species production. This study hypothesized that LD-based sequestration of cercosporin occurred in <i>C</i>. cf. <i>flagellaris</i> and that lipid-inhibiting fungicides could inhibit toxin production. Confocal microscopy using light-cultured <i>C</i>. cf. <i>flagellaris</i> indicated that 3-day-old hyphae contained two forms of cercosporin distributed in two types of hyphae. Reduced cercosporin was uniformly distributed in the cytoplasm of thick, primary hyphae, and, contrary to previous studies, active cercosporin was observed specifically in the LDs of thin, secondary hyphae. The production of hyphae of two different thicknesses, a characteristic of hemibiotrophic plant pathogens, has not been documented in <i>C</i>. cf. <i>flagellaris</i>. No correlation was observed between cercosporin production and total lipid extracted, and two lipid-inhibiting fungicides had little effect on fungal growth in growth-inhibition assays. This study lays a foundation for exploring the importance of pathogen lifestyle, toxin production, and LD content in the pathogenicity and symptomology of <i>Cercospora</i>.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution and Sequestration of Cercosporin by <i>Cercospora</i> cf. <i>flagellaris</i>.\",\"authors\":\"Maria Izabel Costa de Novaes, Clark Robertson, Vinson P Doyle, David Burk, Sara Thomas-Sharma\",\"doi\":\"10.1094/PHYTO-09-23-0310-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-pathogenic fungi produce toxins as virulence factors in many plant diseases. In Cercospora leaf blight of soybean caused by <i>Cercospora</i> cf. <i>flagellaris</i>, symptoms are a consequence of the production of a perylenequinone toxin, cercosporin, which is light-activated to produce damaging reactive oxygen species. Cercosporin is universally toxic to cells, except to the cells of the producer. The current model of self-resistance to cercosporin is largely attributed to the maintenance of cercosporin in a chemically reduced state inside hyphae, unassociated with cellular organelles. However, in another perylenequinone-producing fungus, <i>Phaeosphaeria</i> sp., the toxin was specifically sequestered inside lipid droplets (LDs) to prevent reactive oxygen species production. This study hypothesized that LD-based sequestration of cercosporin occurred in <i>C</i>. cf. <i>flagellaris</i> and that lipid-inhibiting fungicides could inhibit toxin production. Confocal microscopy using light-cultured <i>C</i>. cf. <i>flagellaris</i> indicated that 3-day-old hyphae contained two forms of cercosporin distributed in two types of hyphae. Reduced cercosporin was uniformly distributed in the cytoplasm of thick, primary hyphae, and, contrary to previous studies, active cercosporin was observed specifically in the LDs of thin, secondary hyphae. The production of hyphae of two different thicknesses, a characteristic of hemibiotrophic plant pathogens, has not been documented in <i>C</i>. cf. <i>flagellaris</i>. No correlation was observed between cercosporin production and total lipid extracted, and two lipid-inhibiting fungicides had little effect on fungal growth in growth-inhibition assays. This study lays a foundation for exploring the importance of pathogen lifestyle, toxin production, and LD content in the pathogenicity and symptomology of <i>Cercospora</i>.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-09-23-0310-R\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-09-23-0310-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在许多植物病害中,植物病原真菌都会产生毒素作为毒力因子。在由 Cercospora cf. flagellaris 引起的大豆 Cercospora 叶枯病(CLB)中,症状是产生一种过醌毒素 cercosporin 的结果,这种毒素在光的作用下产生破坏性活性氧(ROS)。纤孢菌素对细胞具有普遍毒性,但对生产者的细胞除外。目前对纤孢菌素的自我抗性模型主要归因于纤孢菌素在菌丝内保持化学还原状态,不与细胞器结合。然而,在另一种产生过醌的真菌 Phaeosphaeria sp.中,毒素被特异性地封闭在脂滴(LDs)中,以防止产生 ROS。本研究推测,在鞭毛菌中发生了基于脂滴的螯合作用,而抑制脂质的杀真菌剂可以抑制毒素的产生。使用光照培养的鞭毛菌进行共聚焦显微镜观察发现,3 天龄的菌丝含有两种形式的纤孢菌素,分布在两种类型的菌丝中。还原型纤孢菌素均匀地分布在粗大的初级菌丝的细胞质中,而与之前的研究相反,活性纤孢菌素特别分布在细小的次级菌丝的LD中。产生两种不同粗细的菌丝是半生物营养性植物病原体的特征,但在鞭毛菌中还没有记录。在生长抑制试验中,两种抑制脂质的杀真菌剂对真菌的生长几乎没有影响。这项研究为探索病原体的生活方式、毒素产量和 LD 含量对 Cercospora 的致病性和症状的重要性奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distribution and Sequestration of Cercosporin by Cercospora cf. flagellaris.

Plant-pathogenic fungi produce toxins as virulence factors in many plant diseases. In Cercospora leaf blight of soybean caused by Cercospora cf. flagellaris, symptoms are a consequence of the production of a perylenequinone toxin, cercosporin, which is light-activated to produce damaging reactive oxygen species. Cercosporin is universally toxic to cells, except to the cells of the producer. The current model of self-resistance to cercosporin is largely attributed to the maintenance of cercosporin in a chemically reduced state inside hyphae, unassociated with cellular organelles. However, in another perylenequinone-producing fungus, Phaeosphaeria sp., the toxin was specifically sequestered inside lipid droplets (LDs) to prevent reactive oxygen species production. This study hypothesized that LD-based sequestration of cercosporin occurred in C. cf. flagellaris and that lipid-inhibiting fungicides could inhibit toxin production. Confocal microscopy using light-cultured C. cf. flagellaris indicated that 3-day-old hyphae contained two forms of cercosporin distributed in two types of hyphae. Reduced cercosporin was uniformly distributed in the cytoplasm of thick, primary hyphae, and, contrary to previous studies, active cercosporin was observed specifically in the LDs of thin, secondary hyphae. The production of hyphae of two different thicknesses, a characteristic of hemibiotrophic plant pathogens, has not been documented in C. cf. flagellaris. No correlation was observed between cercosporin production and total lipid extracted, and two lipid-inhibiting fungicides had little effect on fungal growth in growth-inhibition assays. This study lays a foundation for exploring the importance of pathogen lifestyle, toxin production, and LD content in the pathogenicity and symptomology of Cercospora.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Biphenyl and dibenzofuran phytoalexins differentially inhibit root-associated microbiota in apple, including fungal and oomycetal replant disease pathogens. Loop-mediated isothermal amplification detection of Phytophthora kernoviae, Phytophthora ramorum, and the P. ramorum NA1 lineage on a microfluidic chip and smartphone platform. Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. Host-Driven Selection, Revealed by Comparative Analysis of Xanthomonas Type III Secretion Effectoromes, Unveils Novel Recognized Effectors. Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1