{"title":"语法糖:为聚糖结构设计正则表达式框架。","authors":"Alexander R Bennett, Daniel Bojar","doi":"10.1093/bioadv/vbae059","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Structural analysis of glycans poses significant challenges in glycobiology due to their complex sequences. Research questions such as analyzing the sequence content of the α1-6 branch in <i>N</i>-glycans, are biologically meaningful yet can be hard to automate.</p><p><strong>Results: </strong>Here, we introduce a regular expression system, designed for glycans, feature-complete, and closely aligned with regular expression formatting. We use this to annotate glycan motifs of arbitrary complexity, perform differential expression analysis on designated sequence stretches, or elucidate branch-specific binding specificities of lectins in an automated manner. We are confident that glycan regular expressions will empower computational analyses of these sequences.</p><p><strong>Availability and implementation: </strong>Our regular expression framework for glycans is implemented in Python and is incorporated into the open-source glycowork package (version 1.1+). Code and documentation are available at https://github.com/BojarLab/glycowork/blob/master/glycowork/motif/regex.py.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae059"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Syntactic sugars: crafting a regular expression framework for glycan structures.\",\"authors\":\"Alexander R Bennett, Daniel Bojar\",\"doi\":\"10.1093/bioadv/vbae059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Structural analysis of glycans poses significant challenges in glycobiology due to their complex sequences. Research questions such as analyzing the sequence content of the α1-6 branch in <i>N</i>-glycans, are biologically meaningful yet can be hard to automate.</p><p><strong>Results: </strong>Here, we introduce a regular expression system, designed for glycans, feature-complete, and closely aligned with regular expression formatting. We use this to annotate glycan motifs of arbitrary complexity, perform differential expression analysis on designated sequence stretches, or elucidate branch-specific binding specificities of lectins in an automated manner. We are confident that glycan regular expressions will empower computational analyses of these sequences.</p><p><strong>Availability and implementation: </strong>Our regular expression framework for glycans is implemented in Python and is incorporated into the open-source glycowork package (version 1.1+). Code and documentation are available at https://github.com/BojarLab/glycowork/blob/master/glycowork/motif/regex.py.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae059\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Syntactic sugars: crafting a regular expression framework for glycan structures.
Motivation: Structural analysis of glycans poses significant challenges in glycobiology due to their complex sequences. Research questions such as analyzing the sequence content of the α1-6 branch in N-glycans, are biologically meaningful yet can be hard to automate.
Results: Here, we introduce a regular expression system, designed for glycans, feature-complete, and closely aligned with regular expression formatting. We use this to annotate glycan motifs of arbitrary complexity, perform differential expression analysis on designated sequence stretches, or elucidate branch-specific binding specificities of lectins in an automated manner. We are confident that glycan regular expressions will empower computational analyses of these sequences.
Availability and implementation: Our regular expression framework for glycans is implemented in Python and is incorporated into the open-source glycowork package (version 1.1+). Code and documentation are available at https://github.com/BojarLab/glycowork/blob/master/glycowork/motif/regex.py.