转录组特征网络确定了精神分裂症与躯体疾病之间的新型合并机制。

Youcheng Zhang, Vinay S Bharadhwaj, Alpha T Kodamullil, Carl Herrmann
{"title":"转录组特征网络确定了精神分裂症与躯体疾病之间的新型合并机制。","authors":"Youcheng Zhang, Vinay S Bharadhwaj, Alpha T Kodamullil, Carl Herrmann","doi":"10.1007/s44192-024-00063-8","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical burden of mental illness, in particular schizophrenia and bipolar disorder, are driven by frequent chronic courses and increased mortality, as well as the risk for comorbid conditions such as cardiovascular disease and type 2 diabetes. Evidence suggests an overlap of molecular pathways between psychotic disorders and somatic comorbidities. In this study, we developed a computational framework to perform comorbidity modeling via an improved integrative unsupervised machine learning approach based on multi-rank non-negative matrix factorization (mrNMF). Using this procedure, we extracted molecular signatures potentially explaining shared comorbidity mechanisms. For this, 27 case-control microarray transcriptomic datasets across multiple tissues were collected, covering three main categories of conditions including psychotic disorders, cardiovascular diseases and type II diabetes. We addressed the limitation of normal NMF for parameter selection by introducing multi-rank ensembled NMF to identify signatures under various hierarchical levels simultaneously. Analysis of comorbidity signature pairs was performed to identify several potential mechanisms involving activation of inflammatory response auxiliarily interconnecting angiogenesis, oxidative response and GABAergic neuro-action. Overall, we proposed a general cross-cohorts computing workflow for investigating the comorbid pattern across multiple symptoms, applied it to the real-data comorbidity study on schizophrenia, and further discussed the potential for future application of the approach.</p>","PeriodicalId":72827,"journal":{"name":"Discover mental health","volume":"4 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994898/pdf/","citationCount":"0","resultStr":"{\"title\":\"A network of transcriptomic signatures identifies novel comorbidity mechanisms between schizophrenia and somatic disorders.\",\"authors\":\"Youcheng Zhang, Vinay S Bharadhwaj, Alpha T Kodamullil, Carl Herrmann\",\"doi\":\"10.1007/s44192-024-00063-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical burden of mental illness, in particular schizophrenia and bipolar disorder, are driven by frequent chronic courses and increased mortality, as well as the risk for comorbid conditions such as cardiovascular disease and type 2 diabetes. Evidence suggests an overlap of molecular pathways between psychotic disorders and somatic comorbidities. In this study, we developed a computational framework to perform comorbidity modeling via an improved integrative unsupervised machine learning approach based on multi-rank non-negative matrix factorization (mrNMF). Using this procedure, we extracted molecular signatures potentially explaining shared comorbidity mechanisms. For this, 27 case-control microarray transcriptomic datasets across multiple tissues were collected, covering three main categories of conditions including psychotic disorders, cardiovascular diseases and type II diabetes. We addressed the limitation of normal NMF for parameter selection by introducing multi-rank ensembled NMF to identify signatures under various hierarchical levels simultaneously. Analysis of comorbidity signature pairs was performed to identify several potential mechanisms involving activation of inflammatory response auxiliarily interconnecting angiogenesis, oxidative response and GABAergic neuro-action. Overall, we proposed a general cross-cohorts computing workflow for investigating the comorbid pattern across multiple symptoms, applied it to the real-data comorbidity study on schizophrenia, and further discussed the potential for future application of the approach.</p>\",\"PeriodicalId\":72827,\"journal\":{\"name\":\"Discover mental health\",\"volume\":\"4 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994898/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover mental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44192-024-00063-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover mental health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44192-024-00063-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精神疾病,尤其是精神分裂症和双相情感障碍,会导致频繁的慢性病程和死亡率上升,以及心血管疾病和 2 型糖尿病等并发症的风险,从而给临床带来沉重负担。有证据表明,精神障碍和躯体合并症之间存在分子通路的重叠。在这项研究中,我们开发了一个计算框架,通过基于多秩非负矩阵因式分解(mrNMF)的改进型综合无监督机器学习方法来进行合并症建模。利用这一方法,我们提取了可能解释共同合并症机制的分子特征。为此,我们收集了 27 个病例对照微阵列转录组数据集,涉及多个组织,涵盖三大类疾病,包括精神障碍、心血管疾病和 II 型糖尿病。针对普通 NMF 在参数选择方面的局限性,我们引入了多秩集合 NMF,以同时识别不同层次下的特征。我们对合并症特征对进行了分析,以确定涉及激活炎症反应的几种潜在机制,这些炎症反应与血管生成、氧化反应和 GABA 能神经作用相互关联。总之,我们提出了一种通用的跨队列计算工作流程,用于研究多种症状的共病模式,并将其应用于精神分裂症的真实数据共病研究,还进一步讨论了该方法未来的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A network of transcriptomic signatures identifies novel comorbidity mechanisms between schizophrenia and somatic disorders.

The clinical burden of mental illness, in particular schizophrenia and bipolar disorder, are driven by frequent chronic courses and increased mortality, as well as the risk for comorbid conditions such as cardiovascular disease and type 2 diabetes. Evidence suggests an overlap of molecular pathways between psychotic disorders and somatic comorbidities. In this study, we developed a computational framework to perform comorbidity modeling via an improved integrative unsupervised machine learning approach based on multi-rank non-negative matrix factorization (mrNMF). Using this procedure, we extracted molecular signatures potentially explaining shared comorbidity mechanisms. For this, 27 case-control microarray transcriptomic datasets across multiple tissues were collected, covering three main categories of conditions including psychotic disorders, cardiovascular diseases and type II diabetes. We addressed the limitation of normal NMF for parameter selection by introducing multi-rank ensembled NMF to identify signatures under various hierarchical levels simultaneously. Analysis of comorbidity signature pairs was performed to identify several potential mechanisms involving activation of inflammatory response auxiliarily interconnecting angiogenesis, oxidative response and GABAergic neuro-action. Overall, we proposed a general cross-cohorts computing workflow for investigating the comorbid pattern across multiple symptoms, applied it to the real-data comorbidity study on schizophrenia, and further discussed the potential for future application of the approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Distribution and association of road traffic accident with depression among Indian population aged 45 years and above: nested multilevel modelling analysis of nationally representative cross-sectional survey. Unveiling the burden: prevalence and predictors of psychological distress among domestic workers in Kigali-Rwanda. Patterns and outcomes of individuals admitted at emergency units following intentional self-harm in Northern Uganda. Prevalence of substance use among a sample of patients attending an outpatient psychiatric clinic in Amman, Jordan. The role of emotion regulation strategies as the mediator between self-compassion and depression among undergraduates in Yunnan province, China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1