[人甲状腺过氧化物酶、甲状腺球蛋白、嗜酸性粒细胞过氧化物酶、IL-24 和微生物抗原之间的分子模拟]。

Andrés Sánchez, Valentina García, Yuliana Marcela Emiliani-Navarro, Jorge Sánchez, Juan Camilo Ramos-Gomez, Sonia Karina González-Rangel, Marlon Munera-Gomez
{"title":"[人甲状腺过氧化物酶、甲状腺球蛋白、嗜酸性粒细胞过氧化物酶、IL-24 和微生物抗原之间的分子模拟]。","authors":"Andrés Sánchez, Valentina García, Yuliana Marcela Emiliani-Navarro, Jorge Sánchez, Juan Camilo Ramos-Gomez, Sonia Karina González-Rangel, Marlon Munera-Gomez","doi":"10.29262/ram.v71i1.1376","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Identify molecular mimicry between TPO, eosinophil peroxidase (EPX), thyroglobulin and IL24 and microorganism antigens.</p><p><strong>Methods: </strong>Through in silico analysis, we performed local alignments between human and microorganism antigens with PSI-BLAST. Proteins that did not present a 3D structure were modeled by homology through the Swiss Modeller server and epitope prediction was performed through Ellipro. Epitopes were located in the 3D models using PYMOL software.</p><p><strong>Results: </strong>A total of 38 microorganism antigens (parasites, bacteria) had identities between 30% and 45%, being the highest with Anisakis simplex. The alignment between 2 candidate proteins from A. simplex and EPX presented significant values, with identities of 43 and 44%. In bacteria, Campylobacter jejuni presented the highest identity with thyroglobulin (35%). 220 linear and conformational epitopes of microorganism antigens were predicted. Peroxidasin-like proteins from Toxocara canis and Trichinella pseudospiralis presented 10 epitopes similar to TPO and EPX, as possible molecules triggering cross-reactivity. No virus presented identity with the human proteins studied.</p><p><strong>Conclusion: </strong>TPO and EPX antigens shared potential cross-reactive epitopes with bacterial and nematode proteins, suggesting that molecular mimicry could be a mechanism that explains the relationship between infections and urticaria/hypothyroidism. In vitro work is needed to demonstrate the results obtained in the in silico analysis.</p>","PeriodicalId":101421,"journal":{"name":"Revista alergia Mexico (Tecamachalco, Puebla, Mexico : 1993)","volume":"71 1","pages":"57"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Molecular mimicry between human thyroid peroxidase, thyroglobulin, cosinophil peroxidase, IL-24 and microorganisms antigens].\",\"authors\":\"Andrés Sánchez, Valentina García, Yuliana Marcela Emiliani-Navarro, Jorge Sánchez, Juan Camilo Ramos-Gomez, Sonia Karina González-Rangel, Marlon Munera-Gomez\",\"doi\":\"10.29262/ram.v71i1.1376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Identify molecular mimicry between TPO, eosinophil peroxidase (EPX), thyroglobulin and IL24 and microorganism antigens.</p><p><strong>Methods: </strong>Through in silico analysis, we performed local alignments between human and microorganism antigens with PSI-BLAST. Proteins that did not present a 3D structure were modeled by homology through the Swiss Modeller server and epitope prediction was performed through Ellipro. Epitopes were located in the 3D models using PYMOL software.</p><p><strong>Results: </strong>A total of 38 microorganism antigens (parasites, bacteria) had identities between 30% and 45%, being the highest with Anisakis simplex. The alignment between 2 candidate proteins from A. simplex and EPX presented significant values, with identities of 43 and 44%. In bacteria, Campylobacter jejuni presented the highest identity with thyroglobulin (35%). 220 linear and conformational epitopes of microorganism antigens were predicted. Peroxidasin-like proteins from Toxocara canis and Trichinella pseudospiralis presented 10 epitopes similar to TPO and EPX, as possible molecules triggering cross-reactivity. No virus presented identity with the human proteins studied.</p><p><strong>Conclusion: </strong>TPO and EPX antigens shared potential cross-reactive epitopes with bacterial and nematode proteins, suggesting that molecular mimicry could be a mechanism that explains the relationship between infections and urticaria/hypothyroidism. In vitro work is needed to demonstrate the results obtained in the in silico analysis.</p>\",\"PeriodicalId\":101421,\"journal\":{\"name\":\"Revista alergia Mexico (Tecamachalco, Puebla, Mexico : 1993)\",\"volume\":\"71 1\",\"pages\":\"57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista alergia Mexico (Tecamachalco, Puebla, Mexico : 1993)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29262/ram.v71i1.1376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista alergia Mexico (Tecamachalco, Puebla, Mexico : 1993)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29262/ram.v71i1.1376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:确定TPO、嗜酸性粒细胞过氧化物酶(EPX)、甲状腺球蛋白和IL24与微生物抗原之间的分子模拟:确定TPO、嗜酸性粒细胞过氧化物酶(EPX)、甲状腺球蛋白和IL24与微生物抗原之间的分子拟态:我们利用 PSI-BLAST 进行了人类抗原与微生物抗原之间的局部比对。对于没有三维结构的蛋白质,我们通过 Swiss Modeller 服务器进行了同源建模,并通过 Ellipro 进行了表位预测。使用PYMOL软件在三维模型中定位表位:共有 38 种微生物抗原(寄生虫、细菌)的同源性在 30% 至 45% 之间,其中与单纯疟原虫的同源性最高。单纯疟原虫的两种候选蛋白质与 EPX 的比对结果显示出显著的相同值,分别为 43% 和 44%。在细菌中,空肠弯曲杆菌与甲状腺球蛋白的同一性最高(35%)。预测了 220 个微生物抗原的线性表位和构象表位。来自犬弓形虫和假螺旋体毛癣菌的过氧化物酶样蛋白呈现出 10 个与 TPO 和 EPX 相似的表位,可能是引发交叉反应的分子。没有一种病毒与所研究的人类蛋白质有相同之处:结论:TPO和EPX抗原与细菌和线虫蛋白具有潜在的交叉反应表位,这表明分子模仿可能是解释感染与荨麻疹/甲状腺功能减退症之间关系的一种机制。需要开展体外工作来证明在硅学分析中获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Molecular mimicry between human thyroid peroxidase, thyroglobulin, cosinophil peroxidase, IL-24 and microorganisms antigens].

Objective: Identify molecular mimicry between TPO, eosinophil peroxidase (EPX), thyroglobulin and IL24 and microorganism antigens.

Methods: Through in silico analysis, we performed local alignments between human and microorganism antigens with PSI-BLAST. Proteins that did not present a 3D structure were modeled by homology through the Swiss Modeller server and epitope prediction was performed through Ellipro. Epitopes were located in the 3D models using PYMOL software.

Results: A total of 38 microorganism antigens (parasites, bacteria) had identities between 30% and 45%, being the highest with Anisakis simplex. The alignment between 2 candidate proteins from A. simplex and EPX presented significant values, with identities of 43 and 44%. In bacteria, Campylobacter jejuni presented the highest identity with thyroglobulin (35%). 220 linear and conformational epitopes of microorganism antigens were predicted. Peroxidasin-like proteins from Toxocara canis and Trichinella pseudospiralis presented 10 epitopes similar to TPO and EPX, as possible molecules triggering cross-reactivity. No virus presented identity with the human proteins studied.

Conclusion: TPO and EPX antigens shared potential cross-reactive epitopes with bacterial and nematode proteins, suggesting that molecular mimicry could be a mechanism that explains the relationship between infections and urticaria/hypothyroidism. In vitro work is needed to demonstrate the results obtained in the in silico analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Adenovirus-related acute liver failure treated with intravenous immunoglobulin]. [Allergic contact dermatitis due to Furacin®]. [Chronic urticaria as an atypical reaction after a vespid bite]. [Epidemiological profile of allergic respiratory disease in Mexican children]. [Knowledge of mothers of children under 5 years of age about vaccination schedule].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1