{"title":"用于长读数细菌基因组组装和评估的 Snakemake 工作流程。","authors":"Peter Menzel","doi":"10.46471/gigabyte.116","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of long-read sequencing technologies and their increasing use for bacterial genomics, several methods for generating genome assemblies from error-prone long reads have been developed. These are complemented by various tools for assembly polishing using either long reads, short reads, or reference genomes. End users are therefore left with a plethora of possible combinations of programs for obtaining a final trusted assembly. Hence, there is also a need to measure the completeness and accuracy of such assemblies, for which, again, several evaluation methods implemented in various programs are available. In order to automatically run multiple genome assembly and evaluation programs at once, I developed two workflows for the workflow management system Snakemake, which provide end users with an easy-to-run solution for testing various genome assemblies from their sequencing data. Both workflows use the conda packaging system, so there is no need for manual installation of each program.</p><p><strong>Availability & implementation: </strong>The workflows are available as open source software under the MIT license at github.com/pmenzel/ont-assembly-snake and github.com/pmenzel/score-assemblies.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte116"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000499/pdf/","citationCount":"0","resultStr":"{\"title\":\"Snakemake workflows for long-read bacterial genome assembly and evaluation.\",\"authors\":\"Peter Menzel\",\"doi\":\"10.46471/gigabyte.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advancement of long-read sequencing technologies and their increasing use for bacterial genomics, several methods for generating genome assemblies from error-prone long reads have been developed. These are complemented by various tools for assembly polishing using either long reads, short reads, or reference genomes. End users are therefore left with a plethora of possible combinations of programs for obtaining a final trusted assembly. Hence, there is also a need to measure the completeness and accuracy of such assemblies, for which, again, several evaluation methods implemented in various programs are available. In order to automatically run multiple genome assembly and evaluation programs at once, I developed two workflows for the workflow management system Snakemake, which provide end users with an easy-to-run solution for testing various genome assemblies from their sequencing data. Both workflows use the conda packaging system, so there is no need for manual installation of each program.</p><p><strong>Availability & implementation: </strong>The workflows are available as open source software under the MIT license at github.com/pmenzel/ont-assembly-snake and github.com/pmenzel/score-assemblies.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000499/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
随着长读数测序技术的发展及其在细菌基因组学中的应用日益广泛,已经开发出了几种从容易出错的长读数中生成基因组装配的方法。此外,还有各种利用长读数、短读数或参考基因组进行组装抛光的工具。因此,最终用户只能通过大量可能的程序组合来获得最终可信的组装结果。因此,还需要对这些组装的完整性和准确性进行测量,为此,在各种程序中也提供了多种评估方法。为了一次自动运行多个基因组组装和评估程序,我为工作流管理系统 Snakemake 开发了两个工作流,为终端用户提供了一个易于运行的解决方案,以测试其测序数据中的各种基因组组装。这两个工作流程都使用 conda 打包系统,因此无需手动安装每个程序:这两个工作流均为 MIT 许可下的开源软件,分别位于 github.com/pmenzel/ont-assembly-snake 和 github.com/pmenzel/score-assemblies。
Snakemake workflows for long-read bacterial genome assembly and evaluation.
With the advancement of long-read sequencing technologies and their increasing use for bacterial genomics, several methods for generating genome assemblies from error-prone long reads have been developed. These are complemented by various tools for assembly polishing using either long reads, short reads, or reference genomes. End users are therefore left with a plethora of possible combinations of programs for obtaining a final trusted assembly. Hence, there is also a need to measure the completeness and accuracy of such assemblies, for which, again, several evaluation methods implemented in various programs are available. In order to automatically run multiple genome assembly and evaluation programs at once, I developed two workflows for the workflow management system Snakemake, which provide end users with an easy-to-run solution for testing various genome assemblies from their sequencing data. Both workflows use the conda packaging system, so there is no need for manual installation of each program.
Availability & implementation: The workflows are available as open source software under the MIT license at github.com/pmenzel/ont-assembly-snake and github.com/pmenzel/score-assemblies.