发现作为广谱抗寄生虫药物的 1,3,4-恶二唑衍生物。

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2024-05-08 DOI:10.1021/acsinfecdis.4c00181
Alexandra Ioana Corfu, Nuno Santarem, Sara Luelmo, Gaia Mazza, Alessandro Greco, Alessandra Altomare, Giulio Ferrario, Giulia Nasta, Oliver Keminer, Giancarlo Aldini, Lucia Tamborini, Nicoletta Basilico, Silvia Parapini, Sheraz Gul, Anabela Cordeiro-da-Silva, Paola Conti and Chiara Borsari*, 
{"title":"发现作为广谱抗寄生虫药物的 1,3,4-恶二唑衍生物。","authors":"Alexandra Ioana Corfu,&nbsp;Nuno Santarem,&nbsp;Sara Luelmo,&nbsp;Gaia Mazza,&nbsp;Alessandro Greco,&nbsp;Alessandra Altomare,&nbsp;Giulio Ferrario,&nbsp;Giulia Nasta,&nbsp;Oliver Keminer,&nbsp;Giancarlo Aldini,&nbsp;Lucia Tamborini,&nbsp;Nicoletta Basilico,&nbsp;Silvia Parapini,&nbsp;Sheraz Gul,&nbsp;Anabela Cordeiro-da-Silva,&nbsp;Paola Conti and Chiara Borsari*,&nbsp;","doi":"10.1021/acsinfecdis.4c00181","DOIUrl":null,"url":null,"abstract":"<p >Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward <i>Trypanosoma brucei</i> (<i>T. brucei</i>) and identifying a 1,3,4-oxadiazole derivative (<b>19</b>) as anti-<i>T. brucei</i> hit with predicted blood–brain barrier permeability. Subsequently, extensive structure–activity–relationship studies around the lipophilic tail of <b>19</b> led to a potent antitrypanosomal and antimalarial compound (<b>27</b>), with moderate potency also toward <i>Leishmania infantum</i> (<i>L. infantum</i>) and <i>Leishmania tropica</i>. In addition, we discovered a pan-active antiparasitic molecule (<b>24</b>), showing low-micromolar IC<sub>50</sub>s toward <i>T. brucei</i> and <i>Leishmania</i> spp. promastigotes and amastigotes, and nanomolar IC<sub>50</sub> against <i>Plasmodium falciparum</i>, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized <b>24</b> and <b>27</b>, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (<b>30</b>) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the <i>T. brucei</i> parasite.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of 1,3,4-Oxadiazole Derivatives as Broad-Spectrum Antiparasitic Agents\",\"authors\":\"Alexandra Ioana Corfu,&nbsp;Nuno Santarem,&nbsp;Sara Luelmo,&nbsp;Gaia Mazza,&nbsp;Alessandro Greco,&nbsp;Alessandra Altomare,&nbsp;Giulio Ferrario,&nbsp;Giulia Nasta,&nbsp;Oliver Keminer,&nbsp;Giancarlo Aldini,&nbsp;Lucia Tamborini,&nbsp;Nicoletta Basilico,&nbsp;Silvia Parapini,&nbsp;Sheraz Gul,&nbsp;Anabela Cordeiro-da-Silva,&nbsp;Paola Conti and Chiara Borsari*,&nbsp;\",\"doi\":\"10.1021/acsinfecdis.4c00181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward <i>Trypanosoma brucei</i> (<i>T. brucei</i>) and identifying a 1,3,4-oxadiazole derivative (<b>19</b>) as anti-<i>T. brucei</i> hit with predicted blood–brain barrier permeability. Subsequently, extensive structure–activity–relationship studies around the lipophilic tail of <b>19</b> led to a potent antitrypanosomal and antimalarial compound (<b>27</b>), with moderate potency also toward <i>Leishmania infantum</i> (<i>L. infantum</i>) and <i>Leishmania tropica</i>. In addition, we discovered a pan-active antiparasitic molecule (<b>24</b>), showing low-micromolar IC<sub>50</sub>s toward <i>T. brucei</i> and <i>Leishmania</i> spp. promastigotes and amastigotes, and nanomolar IC<sub>50</sub> against <i>Plasmodium falciparum</i>, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized <b>24</b> and <b>27</b>, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (<b>30</b>) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the <i>T. brucei</i> parasite.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00181\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00181","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

病媒传播寄生虫病(VBPDs)对全球公共卫生构成重大威胁。非洲人锥虫病(HAT)、利什曼病和疟疾共同威胁着数百万人的健康,尤其是在发展中国家。气候变化可能会改变非洲锥虫病的传播和扩散,导致这些疾病的全球负担。因此,迫切需要新型制剂来扩大治疗选择并限制耐药性寄生虫的传播。在此,我们报告了广谱抗寄生虫药物的开发情况,我们筛选了已知的抗利什曼病和抗疟疾化合物库中的布氏锥虫(T. brucei),并确定了一种 1,3,4-恶二唑衍生物 (19) 作为抗布氏锥虫的药物,其血脑屏障渗透性可预测。随后,我们围绕 19 的亲脂性尾部进行了广泛的结构-活性-关系研究,最终发现了一种强效的抗锥虫和抗疟化合物(27),该化合物对婴儿利什曼原虫(L. infantum)和热带利什曼原虫(Lishmania tropica)也有一定的效力。此外,我们还发现了一种泛活性抗寄生虫分子(24),对布鲁塞原虫、利什曼原虫和非原虫的 IC50 值为低微摩尔,对恶性疟原虫的 IC50 值为纳摩尔,对寄生虫的选择性高于哺乳动物细胞(THP-1)。我们使用早期 ADME 毒性试验来评估化合物的安全性。总的来说,我们发现 24 和 27 具有 1,3,4-恶二唑特权支架,是治疗 VBPD 的广谱低毒药物。我们还合成了炔烃取代的化学探针(30),并将把它用于蛋白质组学实验,以揭示布氏杆菌寄生虫的作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of 1,3,4-Oxadiazole Derivatives as Broad-Spectrum Antiparasitic Agents

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood–brain barrier permeability. Subsequently, extensive structure–activity–relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Antifungal Tetrahydrocarbazole Compound CAR-8 Induces Endoplasmic Reticulum Stress in Candida albicans. Infection and the Glycome─New Insights into Host Response. Multifunctional Nanosystem for Dual Anti-Inflammatory and Antibacterial Photodynamic Therapy in Infectious Diabetic Wounds. Activation of Antiviral Host Responses against Avian Influenza Virus and Remodeling of Gut Microbiota by rLAB Vector Expressing rIL-17A in Chickens. Conserved Evolutionary Trajectory Can Be Perturbed to Prevent Resistance Evolution under Norfloxacin Pressure by Forcing Mycobacterium smegmatis on Alternate Evolutionary Paths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1