Fe(Te,Se)/Bi4Te3 异质结构中的间隙增强超导性。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-05-08 DOI:10.1002/adma.202401809
An-Hsi Chen, Qiangsheng Lu, Eitan Hershkovitz, Miguel L. Crespillo, Alessandro R. Mazza, Tyler Smith, T. Zac Ward, Gyula Eres, Shornam Gandhi, Meer Muhtasim Mahfuz, Vitalii Starchenko, Khalid Hattar, Joon Sue Lee, Honggyu Kim, Robert G. Moore, Matthew Brahlek
{"title":"Fe(Te,Se)/Bi4Te3 异质结构中的间隙增强超导性。","authors":"An-Hsi Chen,&nbsp;Qiangsheng Lu,&nbsp;Eitan Hershkovitz,&nbsp;Miguel L. Crespillo,&nbsp;Alessandro R. Mazza,&nbsp;Tyler Smith,&nbsp;T. Zac Ward,&nbsp;Gyula Eres,&nbsp;Shornam Gandhi,&nbsp;Meer Muhtasim Mahfuz,&nbsp;Vitalii Starchenko,&nbsp;Khalid Hattar,&nbsp;Joon Sue Lee,&nbsp;Honggyu Kim,&nbsp;Robert G. Moore,&nbsp;Matthew Brahlek","doi":"10.1002/adma.202401809","DOIUrl":null,"url":null,"abstract":"<p>Realizing topological superconductivity by integrating high-transition-temperature (<i>T</i><sub>C</sub>) superconductors with topological insulators can open new paths for quantum computing applications. Here, a new approach is reported for increasing the superconducting transition temperature <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>T</mi>\n <mi>C</mi>\n <mi>onset</mi>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$( {T_{\\mathrm{C}}^{{\\mathrm{onset}}}} )$</annotation>\n </semantics></math> by interfacing the unconventional superconductor Fe(Te,Se) with the topological insulator Bi–Te system in the low-Se doping regime, near where superconductivity vanishes in the bulk. The critical finding is that the <span></span><math>\n <semantics>\n <msubsup>\n <mi>T</mi>\n <mi>C</mi>\n <mi>onset</mi>\n </msubsup>\n <annotation>$T_{\\mathrm{C}}^{{\\mathrm{onset}}}$</annotation>\n </semantics></math> of Fe(Te,Se) increases from nominally non-superconducting to as high as 12.5 K when Bi<sub>2</sub>Te<sub>3</sub> is replaced with the topological phase Bi<sub>4</sub>Te<sub>3</sub>. Interfacing Fe(Te,Se) with Bi<sub>4</sub>Te<sub>3</sub> is also found to be critical for stabilizing superconductivity in monolayer films where <span></span><math>\n <semantics>\n <msubsup>\n <mi>T</mi>\n <mi>C</mi>\n <mi>onset</mi>\n </msubsup>\n <annotation>$T_{\\mathrm{C}}^{{\\mathrm{onset}}}$</annotation>\n </semantics></math> can be as high as 6 K. Measurements of the electronic and crystalline structure of the Bi<sub>4</sub>Te<sub>3</sub> layer reveal that a large electron transfer, epitaxial strain, and novel chemical reduction processes are critical factors for the enhancement of superconductivity. This novel route for enhancing <i>T</i><sub>C</sub> in an important epitaxial system provides new insight on the nature of interfacial superconductivity and a platform to identify and utilize new electronic phases.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacially Enhanced Superconductivity in Fe(Te,Se)/Bi4Te3 Heterostructures\",\"authors\":\"An-Hsi Chen,&nbsp;Qiangsheng Lu,&nbsp;Eitan Hershkovitz,&nbsp;Miguel L. Crespillo,&nbsp;Alessandro R. Mazza,&nbsp;Tyler Smith,&nbsp;T. Zac Ward,&nbsp;Gyula Eres,&nbsp;Shornam Gandhi,&nbsp;Meer Muhtasim Mahfuz,&nbsp;Vitalii Starchenko,&nbsp;Khalid Hattar,&nbsp;Joon Sue Lee,&nbsp;Honggyu Kim,&nbsp;Robert G. Moore,&nbsp;Matthew Brahlek\",\"doi\":\"10.1002/adma.202401809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Realizing topological superconductivity by integrating high-transition-temperature (<i>T</i><sub>C</sub>) superconductors with topological insulators can open new paths for quantum computing applications. Here, a new approach is reported for increasing the superconducting transition temperature <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>T</mi>\\n <mi>C</mi>\\n <mi>onset</mi>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$( {T_{\\\\mathrm{C}}^{{\\\\mathrm{onset}}}} )$</annotation>\\n </semantics></math> by interfacing the unconventional superconductor Fe(Te,Se) with the topological insulator Bi–Te system in the low-Se doping regime, near where superconductivity vanishes in the bulk. The critical finding is that the <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>T</mi>\\n <mi>C</mi>\\n <mi>onset</mi>\\n </msubsup>\\n <annotation>$T_{\\\\mathrm{C}}^{{\\\\mathrm{onset}}}$</annotation>\\n </semantics></math> of Fe(Te,Se) increases from nominally non-superconducting to as high as 12.5 K when Bi<sub>2</sub>Te<sub>3</sub> is replaced with the topological phase Bi<sub>4</sub>Te<sub>3</sub>. Interfacing Fe(Te,Se) with Bi<sub>4</sub>Te<sub>3</sub> is also found to be critical for stabilizing superconductivity in monolayer films where <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>T</mi>\\n <mi>C</mi>\\n <mi>onset</mi>\\n </msubsup>\\n <annotation>$T_{\\\\mathrm{C}}^{{\\\\mathrm{onset}}}$</annotation>\\n </semantics></math> can be as high as 6 K. Measurements of the electronic and crystalline structure of the Bi<sub>4</sub>Te<sub>3</sub> layer reveal that a large electron transfer, epitaxial strain, and novel chemical reduction processes are critical factors for the enhancement of superconductivity. This novel route for enhancing <i>T</i><sub>C</sub> in an important epitaxial system provides new insight on the nature of interfacial superconductivity and a platform to identify and utilize new electronic phases.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202401809\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202401809","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过整合高温超导体和拓扑绝缘体来实现拓扑超导,可以为量子计算应用开辟新的道路。在这里,我们报告了一种提高超导转变温度(T C o n s e t )$( {T_C^{onset}} )$ 的新方法,即在低掺杂态(接近超导性在块体中消失的位置)将非常规超导体 Fe(Te,Se)与拓扑绝缘体 Bi-Te 系统连接起来。关键的发现是,当 Bi2Te3 被拓扑相 Bi4Te3 取代时,Fe(Te,Se)的 T C o n s e t $T_C^{onset}$ 从名义上的非超导增加到高达 12.5 K。对 Bi4Te3 层的电子和晶体结构的测量表明,大量电子转移、外延应变和新型化学还原过程是增强超导性的关键因素。这种在重要的外延体系中增强超导的新方法为了解界面超导的本质提供了新的视角,也为识别和利用新的电子相提供了一个平台。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacially Enhanced Superconductivity in Fe(Te,Se)/Bi4Te3 Heterostructures

Realizing topological superconductivity by integrating high-transition-temperature (TC) superconductors with topological insulators can open new paths for quantum computing applications. Here, a new approach is reported for increasing the superconducting transition temperature ( T C onset ) $( {T_{\mathrm{C}}^{{\mathrm{onset}}}} )$ by interfacing the unconventional superconductor Fe(Te,Se) with the topological insulator Bi–Te system in the low-Se doping regime, near where superconductivity vanishes in the bulk. The critical finding is that the T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ of Fe(Te,Se) increases from nominally non-superconducting to as high as 12.5 K when Bi2Te3 is replaced with the topological phase Bi4Te3. Interfacing Fe(Te,Se) with Bi4Te3 is also found to be critical for stabilizing superconductivity in monolayer films where T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ can be as high as 6 K. Measurements of the electronic and crystalline structure of the Bi4Te3 layer reveal that a large electron transfer, epitaxial strain, and novel chemical reduction processes are critical factors for the enhancement of superconductivity. This novel route for enhancing TC in an important epitaxial system provides new insight on the nature of interfacial superconductivity and a platform to identify and utilize new electronic phases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Multifunctional Strategies of Advanced Electrocatalysts for Efficient Urea Synthesis Heterogeneous Integration of Wide Bandgap Semiconductors and 2D Materials: Processes, Applications, and Perspectives Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting Intrinsic Narrowband Blue Phosphorescent Materials and Their Applications in 3D Printed Self-monitoring Microfluidic Chips Carbon-based Flame Retardants for Polymers: A Bottom-up Review (Adv. Mater. 42/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1