Emily N Weerakkody, Scott E Dubowsky, Nick G Glumac
{"title":"高温下铀微粒的发射光谱。","authors":"Emily N Weerakkody, Scott E Dubowsky, Nick G Glumac","doi":"10.1177/00037028241247574","DOIUrl":null,"url":null,"abstract":"<p><p>The emission spectrum of micron-scale uranium particulates at high temperatures in the ultraviolet, visible, and near-infrared spectral regions is investigated using a heterogeneous shock tube. Temperatures from 3000 to 9000 K are characterized in an inert argon environment and with incremental amounts of added oxygen. Atomic line spectra do not emerge above the continuum emission spectrum until between 4500 and 5000 K in pure argon, and 6100 and 6600 K in 1% oxygen. For 5% oxygen, however, the threshold for atomic emission drops below 3800 K. Uranium monoxide molecular emission in the strongest visible band at 595.4 nm is not observed at any condition. Uncertainties in particle temperature determination in high-temperature shock tube environments are discussed, and limitations to such measurements are presented, such as those from experimental factors such as the powder loading method and expected detection limits of uranium species in relevant conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emission Spectra of Uranium Particulates at High Temperature.\",\"authors\":\"Emily N Weerakkody, Scott E Dubowsky, Nick G Glumac\",\"doi\":\"10.1177/00037028241247574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emission spectrum of micron-scale uranium particulates at high temperatures in the ultraviolet, visible, and near-infrared spectral regions is investigated using a heterogeneous shock tube. Temperatures from 3000 to 9000 K are characterized in an inert argon environment and with incremental amounts of added oxygen. Atomic line spectra do not emerge above the continuum emission spectrum until between 4500 and 5000 K in pure argon, and 6100 and 6600 K in 1% oxygen. For 5% oxygen, however, the threshold for atomic emission drops below 3800 K. Uranium monoxide molecular emission in the strongest visible band at 595.4 nm is not observed at any condition. Uncertainties in particle temperature determination in high-temperature shock tube environments are discussed, and limitations to such measurements are presented, such as those from experimental factors such as the powder loading method and expected detection limits of uranium species in relevant conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241247574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241247574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
利用异质冲击管研究了高温下微米级铀微粒在紫外线、可见光和近红外光谱区的发射光谱。在惰性氩气环境和氧气添加量递增的情况下,温度范围从 3000 K 到 9000 K。在纯氩气环境中,原子线光谱要到 4500 至 5000 K 之间才会高于连续发射光谱;在 1% 氧气环境中,原子线光谱要到 6100 至 6600 K 之间才会高于连续发射光谱。然而,对于 5% 的氧气,原子发射的临界值会降到 3800 K 以下。在任何条件下都观察不到一氧化铀分子在 595.4 纳米的最强可见光波段中的发射。讨论了高温冲击管环境中粒子温度测定的不确定性,并介绍了此类测量的局限性,如粉末装载方法和相关条件下铀物种的预期检测限等实验因素造成的局限性。
Emission Spectra of Uranium Particulates at High Temperature.
The emission spectrum of micron-scale uranium particulates at high temperatures in the ultraviolet, visible, and near-infrared spectral regions is investigated using a heterogeneous shock tube. Temperatures from 3000 to 9000 K are characterized in an inert argon environment and with incremental amounts of added oxygen. Atomic line spectra do not emerge above the continuum emission spectrum until between 4500 and 5000 K in pure argon, and 6100 and 6600 K in 1% oxygen. For 5% oxygen, however, the threshold for atomic emission drops below 3800 K. Uranium monoxide molecular emission in the strongest visible band at 595.4 nm is not observed at any condition. Uncertainties in particle temperature determination in high-temperature shock tube environments are discussed, and limitations to such measurements are presented, such as those from experimental factors such as the powder loading method and expected detection limits of uranium species in relevant conditions.