{"title":"ContourTL-Net:基于轮廓的转移学习算法,用于早期脑肿瘤检测。","authors":"N I Md Ashafuddula, Rafiqul Islam","doi":"10.1155/2024/6347920","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumors are critical neurological ailments caused by uncontrolled cell growth in the brain or skull, often leading to death. An increasing patient longevity rate requires prompt detection; however, the complexities of brain tissue make early diagnosis challenging. Hence, automated tools are necessary to aid healthcare professionals. This study is particularly aimed at improving the efficacy of computerized brain tumor detection in a clinical setting through a deep learning model. Hence, a novel thresholding-based MRI image segmentation approach with a transfer learning model based on contour (ContourTL-Net) is suggested to facilitate the clinical detection of brain malignancies at an initial phase. The model utilizes contour-based analysis, which is critical for object detection, precise segmentation, and capturing subtle variations in tumor morphology. The model employs a VGG-16 architecture priorly trained on the \"ImageNet\" collection for feature extraction and categorization. The model is designed to utilize its ten nontrainable and three trainable convolutional layers and three dropout layers. The proposed ContourTL-Net model is evaluated on two benchmark datasets in four ways, among which an unseen case is considered as the clinical aspect. Validating a deep learning model on unseen data is crucial to determine the model's generalization capability, domain adaptation, robustness, and real-world applicability. Here, the presented model's outcomes demonstrate a highly accurate classification of the unseen data, achieving a perfect sensitivity and negative predictive value (NPV) of 100%, 98.60% specificity, 99.12% precision, 99.56% <i>F</i>1-score, and 99.46% accuracy. Additionally, the outcomes of the suggested model are compared with state-of-the-art methodologies to further enhance its effectiveness. The proposed solution outperforms the existing solutions in both seen and unseen data, with the potential to significantly improve brain tumor detection efficiency and accuracy, leading to earlier diagnoses and improved patient outcomes.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074715/pdf/","citationCount":"0","resultStr":"{\"title\":\"ContourTL-Net: Contour-Based Transfer Learning Algorithm for Early-Stage Brain Tumor Detection.\",\"authors\":\"N I Md Ashafuddula, Rafiqul Islam\",\"doi\":\"10.1155/2024/6347920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain tumors are critical neurological ailments caused by uncontrolled cell growth in the brain or skull, often leading to death. An increasing patient longevity rate requires prompt detection; however, the complexities of brain tissue make early diagnosis challenging. Hence, automated tools are necessary to aid healthcare professionals. This study is particularly aimed at improving the efficacy of computerized brain tumor detection in a clinical setting through a deep learning model. Hence, a novel thresholding-based MRI image segmentation approach with a transfer learning model based on contour (ContourTL-Net) is suggested to facilitate the clinical detection of brain malignancies at an initial phase. The model utilizes contour-based analysis, which is critical for object detection, precise segmentation, and capturing subtle variations in tumor morphology. The model employs a VGG-16 architecture priorly trained on the \\\"ImageNet\\\" collection for feature extraction and categorization. The model is designed to utilize its ten nontrainable and three trainable convolutional layers and three dropout layers. The proposed ContourTL-Net model is evaluated on two benchmark datasets in four ways, among which an unseen case is considered as the clinical aspect. Validating a deep learning model on unseen data is crucial to determine the model's generalization capability, domain adaptation, robustness, and real-world applicability. Here, the presented model's outcomes demonstrate a highly accurate classification of the unseen data, achieving a perfect sensitivity and negative predictive value (NPV) of 100%, 98.60% specificity, 99.12% precision, 99.56% <i>F</i>1-score, and 99.46% accuracy. Additionally, the outcomes of the suggested model are compared with state-of-the-art methodologies to further enhance its effectiveness. The proposed solution outperforms the existing solutions in both seen and unseen data, with the potential to significantly improve brain tumor detection efficiency and accuracy, leading to earlier diagnoses and improved patient outcomes.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074715/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6347920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6347920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
ContourTL-Net: Contour-Based Transfer Learning Algorithm for Early-Stage Brain Tumor Detection.
Brain tumors are critical neurological ailments caused by uncontrolled cell growth in the brain or skull, often leading to death. An increasing patient longevity rate requires prompt detection; however, the complexities of brain tissue make early diagnosis challenging. Hence, automated tools are necessary to aid healthcare professionals. This study is particularly aimed at improving the efficacy of computerized brain tumor detection in a clinical setting through a deep learning model. Hence, a novel thresholding-based MRI image segmentation approach with a transfer learning model based on contour (ContourTL-Net) is suggested to facilitate the clinical detection of brain malignancies at an initial phase. The model utilizes contour-based analysis, which is critical for object detection, precise segmentation, and capturing subtle variations in tumor morphology. The model employs a VGG-16 architecture priorly trained on the "ImageNet" collection for feature extraction and categorization. The model is designed to utilize its ten nontrainable and three trainable convolutional layers and three dropout layers. The proposed ContourTL-Net model is evaluated on two benchmark datasets in four ways, among which an unseen case is considered as the clinical aspect. Validating a deep learning model on unseen data is crucial to determine the model's generalization capability, domain adaptation, robustness, and real-world applicability. Here, the presented model's outcomes demonstrate a highly accurate classification of the unseen data, achieving a perfect sensitivity and negative predictive value (NPV) of 100%, 98.60% specificity, 99.12% precision, 99.56% F1-score, and 99.46% accuracy. Additionally, the outcomes of the suggested model are compared with state-of-the-art methodologies to further enhance its effectiveness. The proposed solution outperforms the existing solutions in both seen and unseen data, with the potential to significantly improve brain tumor detection efficiency and accuracy, leading to earlier diagnoses and improved patient outcomes.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics