Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart
{"title":"在组合领域利用新颖性搜索合成多样化和辨别性实例集。","authors":"Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart","doi":"10.1162/evco_a_00350","DOIUrl":null,"url":null,"abstract":"<p><p>Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the \"performance gap\" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-41"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains.\",\"authors\":\"Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart\",\"doi\":\"10.1162/evco_a_00350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the \\\"performance gap\\\" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\" \",\"pages\":\"1-41\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00350\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00350","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains.
Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the "performance gap" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.