{"title":"传统的倒易定理在应变梯度弹性中是否会失效?","authors":"Xiao-Jian Xu , Zi-Chen Deng","doi":"10.1016/j.ijengsci.2024.104076","DOIUrl":null,"url":null,"abstract":"<div><p>The force method and displacement method on the basis of the reciprocal theorem play an important role in the field of structural mechanics and have been successfully applied in structural mechanics. However, it is interestingly found that the unexpected paradox exists when the authors attempt to apply it to problems of deformations of strain gradient beams. The reciprocal relation between higher order stresses and higher order strains within the framework of linear elastic strain gradient elasticity is proposed with a view toward studying the physical nature of this paradoxical phenomenon, and it is then used to prove the updated reciprocal theorem. At the same time, the reciprocal theorem of any gradients of any second-order symmetric stress tensors and their corresponding gradients of displacements are derived according to the proposed reciprocal relation. The results show that the essential reason for the failure of the conventional reciprocal theorem is that the effect of higher order surface forces and surface stresses that are produced by strain gradients contributes to the reciprocal work. When the strain gradients work-conjugating to stress gradients are considered, they satisfy the local reciprocal relation that cannot be degenerated to the conventional reciprocal theorem in the form of body forces and inertial forces. The theory developed in this paper may have an increasingly profound effect on continuum mechanics and is expected to be a helpful tool for the mechanics of cellular structures homogenized by strain gradient elasticity.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does the conventional reciprocal theorem break down in strain gradient elasticity?\",\"authors\":\"Xiao-Jian Xu , Zi-Chen Deng\",\"doi\":\"10.1016/j.ijengsci.2024.104076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The force method and displacement method on the basis of the reciprocal theorem play an important role in the field of structural mechanics and have been successfully applied in structural mechanics. However, it is interestingly found that the unexpected paradox exists when the authors attempt to apply it to problems of deformations of strain gradient beams. The reciprocal relation between higher order stresses and higher order strains within the framework of linear elastic strain gradient elasticity is proposed with a view toward studying the physical nature of this paradoxical phenomenon, and it is then used to prove the updated reciprocal theorem. At the same time, the reciprocal theorem of any gradients of any second-order symmetric stress tensors and their corresponding gradients of displacements are derived according to the proposed reciprocal relation. The results show that the essential reason for the failure of the conventional reciprocal theorem is that the effect of higher order surface forces and surface stresses that are produced by strain gradients contributes to the reciprocal work. When the strain gradients work-conjugating to stress gradients are considered, they satisfy the local reciprocal relation that cannot be degenerated to the conventional reciprocal theorem in the form of body forces and inertial forces. The theory developed in this paper may have an increasingly profound effect on continuum mechanics and is expected to be a helpful tool for the mechanics of cellular structures homogenized by strain gradient elasticity.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000600\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000600","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Does the conventional reciprocal theorem break down in strain gradient elasticity?
The force method and displacement method on the basis of the reciprocal theorem play an important role in the field of structural mechanics and have been successfully applied in structural mechanics. However, it is interestingly found that the unexpected paradox exists when the authors attempt to apply it to problems of deformations of strain gradient beams. The reciprocal relation between higher order stresses and higher order strains within the framework of linear elastic strain gradient elasticity is proposed with a view toward studying the physical nature of this paradoxical phenomenon, and it is then used to prove the updated reciprocal theorem. At the same time, the reciprocal theorem of any gradients of any second-order symmetric stress tensors and their corresponding gradients of displacements are derived according to the proposed reciprocal relation. The results show that the essential reason for the failure of the conventional reciprocal theorem is that the effect of higher order surface forces and surface stresses that are produced by strain gradients contributes to the reciprocal work. When the strain gradients work-conjugating to stress gradients are considered, they satisfy the local reciprocal relation that cannot be degenerated to the conventional reciprocal theorem in the form of body forces and inertial forces. The theory developed in this paper may have an increasingly profound effect on continuum mechanics and is expected to be a helpful tool for the mechanics of cellular structures homogenized by strain gradient elasticity.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.