Elena Tiukhova , Pavani Vemuri , Nidia López Flores , Anna Sigridur Islind , María Óskarsdóttir , Stephan Poelmans , Bart Baesens , Monique Snoeck
{"title":"可解释的学习分析:通过可解释人工智能评估学生成功预测模型的稳定性","authors":"Elena Tiukhova , Pavani Vemuri , Nidia López Flores , Anna Sigridur Islind , María Óskarsdóttir , Stephan Poelmans , Bart Baesens , Monique Snoeck","doi":"10.1016/j.dss.2024.114229","DOIUrl":null,"url":null,"abstract":"<div><p>Beyond managing student dropout, higher education stakeholders need decision support to consistently influence the student learning process to keep students motivated, engaged, and successful. At the course level, the combination of predictive analytics and self-regulation theory can help instructors determine the best study advice and allow learners to better self-regulate and determine how they want to learn. The best performing techniques are often black-box models that favor performance over interpretability and are heavily influenced by course contexts. In this study, we argue that explainable AI has the potential not only to uncover the reasons behind model decisions, but also to reveal their stability across contexts, effectively bridging the gap between predictive and explanatory learning analytics (LA). In contributing to decision support systems research, this study (1) leverages traditional techniques, such as concept drift and performance drift, to investigate the stability of student success prediction models over time; (2) uses Shapley Additive explanations in a novel way to explore the stability of extracted feature importance rankings generated for these models; (3) generates new insights that emerge from stable features across cohorts, enabling teachers to determine study advice. We believe this study makes a strong contribution to education research at large and expands the field of LA by augmenting the interpretability and explainability of prediction algorithms and ensuring their applicability in changing contexts.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"182 ","pages":"Article 114229"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable Learning Analytics: Assessing the stability of student success prediction models by means of explainable AI\",\"authors\":\"Elena Tiukhova , Pavani Vemuri , Nidia López Flores , Anna Sigridur Islind , María Óskarsdóttir , Stephan Poelmans , Bart Baesens , Monique Snoeck\",\"doi\":\"10.1016/j.dss.2024.114229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beyond managing student dropout, higher education stakeholders need decision support to consistently influence the student learning process to keep students motivated, engaged, and successful. At the course level, the combination of predictive analytics and self-regulation theory can help instructors determine the best study advice and allow learners to better self-regulate and determine how they want to learn. The best performing techniques are often black-box models that favor performance over interpretability and are heavily influenced by course contexts. In this study, we argue that explainable AI has the potential not only to uncover the reasons behind model decisions, but also to reveal their stability across contexts, effectively bridging the gap between predictive and explanatory learning analytics (LA). In contributing to decision support systems research, this study (1) leverages traditional techniques, such as concept drift and performance drift, to investigate the stability of student success prediction models over time; (2) uses Shapley Additive explanations in a novel way to explore the stability of extracted feature importance rankings generated for these models; (3) generates new insights that emerge from stable features across cohorts, enabling teachers to determine study advice. We believe this study makes a strong contribution to education research at large and expands the field of LA by augmenting the interpretability and explainability of prediction algorithms and ensuring their applicability in changing contexts.</p></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"182 \",\"pages\":\"Article 114229\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923624000629\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624000629","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Explainable Learning Analytics: Assessing the stability of student success prediction models by means of explainable AI
Beyond managing student dropout, higher education stakeholders need decision support to consistently influence the student learning process to keep students motivated, engaged, and successful. At the course level, the combination of predictive analytics and self-regulation theory can help instructors determine the best study advice and allow learners to better self-regulate and determine how they want to learn. The best performing techniques are often black-box models that favor performance over interpretability and are heavily influenced by course contexts. In this study, we argue that explainable AI has the potential not only to uncover the reasons behind model decisions, but also to reveal their stability across contexts, effectively bridging the gap between predictive and explanatory learning analytics (LA). In contributing to decision support systems research, this study (1) leverages traditional techniques, such as concept drift and performance drift, to investigate the stability of student success prediction models over time; (2) uses Shapley Additive explanations in a novel way to explore the stability of extracted feature importance rankings generated for these models; (3) generates new insights that emerge from stable features across cohorts, enabling teachers to determine study advice. We believe this study makes a strong contribution to education research at large and expands the field of LA by augmenting the interpretability and explainability of prediction algorithms and ensuring their applicability in changing contexts.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).