Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song
{"title":"高效低气压设计和优化方法的最新进展","authors":"Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song","doi":"10.1016/j.paerosci.2024.101007","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 101007"},"PeriodicalIF":11.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000332/pdfft?md5=1c50a50d52fa19275511969b31171690&pid=1-s2.0-S0376042124000332-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent progress of efficient low-boom design and optimization methods\",\"authors\":\"Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song\",\"doi\":\"10.1016/j.paerosci.2024.101007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"146 \",\"pages\":\"Article 101007\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0376042124000332/pdfft?md5=1c50a50d52fa19275511969b31171690&pid=1-s2.0-S0376042124000332-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042124000332\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042124000332","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Recent progress of efficient low-boom design and optimization methods
Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.