用于提高效率的预测性在线瞬态稳定性评估

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2024-04-29 DOI:10.1109/OAJPE.2024.3395177
Rui Ma;Sara Eftekharnejad;Chen Zhong
{"title":"用于提高效率的预测性在线瞬态稳定性评估","authors":"Rui Ma;Sara Eftekharnejad;Chen Zhong","doi":"10.1109/OAJPE.2024.3395177","DOIUrl":null,"url":null,"abstract":"Online transient stability assessment (TSA) is essential for the reliable operation of power systems. The increasing deployment of phasor measurement units (PMUs) across power systems provides a wealth of fast, accurate, and detailed transient data, offering significant opportunities to enhance online TSA. Unlike conventional data-driven methods that require large volumes of transient PMU data for accurate TSA, this paper develops a new TSA method that requires significantly less data. This data reduction is enabled by generative and adversarial networks (GAN), which predict voltage time-series data following a transient event, thereby minimizing the need for extensive data. A classifier embedded in the generative network deploys the predicted data to determine the stability of the system. The developed method preserves the temporal correlations in the multivariate time series data. Hence, compared to the state-of-the-art methods, it is more accurate using only one sample of the measured PMU data and has a shorter response time.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10510341","citationCount":"0","resultStr":"{\"title\":\"Predictive Online Transient Stability Assessment for Enhancing Efficiency\",\"authors\":\"Rui Ma;Sara Eftekharnejad;Chen Zhong\",\"doi\":\"10.1109/OAJPE.2024.3395177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online transient stability assessment (TSA) is essential for the reliable operation of power systems. The increasing deployment of phasor measurement units (PMUs) across power systems provides a wealth of fast, accurate, and detailed transient data, offering significant opportunities to enhance online TSA. Unlike conventional data-driven methods that require large volumes of transient PMU data for accurate TSA, this paper develops a new TSA method that requires significantly less data. This data reduction is enabled by generative and adversarial networks (GAN), which predict voltage time-series data following a transient event, thereby minimizing the need for extensive data. A classifier embedded in the generative network deploys the predicted data to determine the stability of the system. The developed method preserves the temporal correlations in the multivariate time series data. Hence, compared to the state-of-the-art methods, it is more accurate using only one sample of the measured PMU data and has a shorter response time.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10510341\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510341/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10510341/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在线暂态稳定性评估(TSA)对于电力系统的可靠运行至关重要。电力系统中越来越多地部署相位测量单元 (PMU),提供了大量快速、准确和详细的暂态数据,为增强在线 TSA 提供了重要机会。传统的数据驱动方法需要大量瞬态 PMU 数据才能实现准确的 TSA,与之不同的是,本文开发了一种新的 TSA 方法,大大减少了对数据的需求。生成和对抗网络 (GAN) 可以减少数据量,它可以预测瞬态事件后的电压时间序列数据,从而最大限度地减少对大量数据的需求。生成网络中嵌入的分类器利用预测数据来确定系统的稳定性。所开发的方法保留了多变量时间序列数据中的时间相关性。因此,与最先进的方法相比,该方法仅使用 PMU 测量数据的一个样本就能获得更高的准确性,并且响应时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Online Transient Stability Assessment for Enhancing Efficiency
Online transient stability assessment (TSA) is essential for the reliable operation of power systems. The increasing deployment of phasor measurement units (PMUs) across power systems provides a wealth of fast, accurate, and detailed transient data, offering significant opportunities to enhance online TSA. Unlike conventional data-driven methods that require large volumes of transient PMU data for accurate TSA, this paper develops a new TSA method that requires significantly less data. This data reduction is enabled by generative and adversarial networks (GAN), which predict voltage time-series data following a transient event, thereby minimizing the need for extensive data. A classifier embedded in the generative network deploys the predicted data to determine the stability of the system. The developed method preserves the temporal correlations in the multivariate time series data. Hence, compared to the state-of-the-art methods, it is more accurate using only one sample of the measured PMU data and has a shorter response time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
A Novel Dual-Rotor Homopolar AC Machine Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning Data Driven Real-Time Dynamic Voltage Control Using Decentralized Execution Multi-Agent Deep Reinforcement Learning Global Research Priorities for Holistic Integration of Water and Power Systems Floating Neutral Detection Using Actual Generation of Form 2S Meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1