Austin L. Oursland;Oleg Ianchenko;Sara M. Reyes;Ryan Douglas;Theodore J. Moody;Madeleine Lee;Matthew S. Reynolds
{"title":"自动优化电子模式搅拌以增强混响腔中的反向散射链路裕度","authors":"Austin L. Oursland;Oleg Ianchenko;Sara M. Reyes;Ryan Douglas;Theodore J. Moody;Madeleine Lee;Matthew S. Reynolds","doi":"10.1109/JRFID.2024.3382687","DOIUrl":null,"url":null,"abstract":"In this paper, we present a series of experiments with a 2.4 GHz dual-polarized electronic mode stirring system for mitigating the dense multipath observed in biomedical telemetry within metal animal cages, including automated control over the mode stirring configuration. Four dual-polarized mode stirring antennas establish eight bits of digital control over the mode structure in a 0.2 m3 metal cage volume. With an optimized mode stirring configuration, we observe 26 dB improvement in the worst case one-way path loss across the 2400–2483 MHz band at 2,124 surveyed locations, sampled with a 1 cm grid on the floor of the cage. Using an example Bluetooth Low Energy link budget, we compare three automated mode stirring strategies for re-configuring the mode structure in response to simulated Brownian animal motion within the cage. Without mode stirring, the link budget has margin in only 68% of the surveyed locations, while with mode stirring, the link budget has margin in 99% of the locations in a stationary-animal scenario, and 92% of the animal locations in a moving-animal scenario. Finally, we present a demonstration of the link margin improvement in an actual communication link using a backscatter-based Bluetooth Low Energy implementation.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Optimization of Electronic Mode Stirring for Enhanced Backscatter Link Margin in Reverberant Cavities\",\"authors\":\"Austin L. Oursland;Oleg Ianchenko;Sara M. Reyes;Ryan Douglas;Theodore J. Moody;Madeleine Lee;Matthew S. Reynolds\",\"doi\":\"10.1109/JRFID.2024.3382687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a series of experiments with a 2.4 GHz dual-polarized electronic mode stirring system for mitigating the dense multipath observed in biomedical telemetry within metal animal cages, including automated control over the mode stirring configuration. Four dual-polarized mode stirring antennas establish eight bits of digital control over the mode structure in a 0.2 m3 metal cage volume. With an optimized mode stirring configuration, we observe 26 dB improvement in the worst case one-way path loss across the 2400–2483 MHz band at 2,124 surveyed locations, sampled with a 1 cm grid on the floor of the cage. Using an example Bluetooth Low Energy link budget, we compare three automated mode stirring strategies for re-configuring the mode structure in response to simulated Brownian animal motion within the cage. Without mode stirring, the link budget has margin in only 68% of the surveyed locations, while with mode stirring, the link budget has margin in 99% of the locations in a stationary-animal scenario, and 92% of the animal locations in a moving-animal scenario. Finally, we present a demonstration of the link margin improvement in an actual communication link using a backscatter-based Bluetooth Low Energy implementation.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10485209/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10485209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Automated Optimization of Electronic Mode Stirring for Enhanced Backscatter Link Margin in Reverberant Cavities
In this paper, we present a series of experiments with a 2.4 GHz dual-polarized electronic mode stirring system for mitigating the dense multipath observed in biomedical telemetry within metal animal cages, including automated control over the mode stirring configuration. Four dual-polarized mode stirring antennas establish eight bits of digital control over the mode structure in a 0.2 m3 metal cage volume. With an optimized mode stirring configuration, we observe 26 dB improvement in the worst case one-way path loss across the 2400–2483 MHz band at 2,124 surveyed locations, sampled with a 1 cm grid on the floor of the cage. Using an example Bluetooth Low Energy link budget, we compare three automated mode stirring strategies for re-configuring the mode structure in response to simulated Brownian animal motion within the cage. Without mode stirring, the link budget has margin in only 68% of the surveyed locations, while with mode stirring, the link budget has margin in 99% of the locations in a stationary-animal scenario, and 92% of the animal locations in a moving-animal scenario. Finally, we present a demonstration of the link margin improvement in an actual communication link using a backscatter-based Bluetooth Low Energy implementation.