用于分析用户参与 Facebook 粉丝页科学传播内容的回归模型

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Programming and Computer Software Pub Date : 2024-01-24 DOI:10.1134/s036176882308025x
P. Velazquez-Solis, J. E. Ibarra-Esquer, M. Astorga-Vargas, B. L. Flores-Rios, M. Carrillo-Beltrán, I. A. García Pacheco
{"title":"用于分析用户参与 Facebook 粉丝页科学传播内容的回归模型","authors":"P. Velazquez-Solis, J. E. Ibarra-Esquer, M. Astorga-Vargas, B. L. Flores-Rios, M. Carrillo-Beltrán, I. A. García Pacheco","doi":"10.1134/s036176882308025x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>User Engagement is a metric that represents a part of the user experience characterized by attributes of reactions, visibility and user interactivity with others. Statistical analysis methods and qualitative analysis were used to establish a new method for calculating User Engagement in Facebook fan pages focused in dissemination of scientific information. We focused on social media processes based on Spearman correlation coefficients and categorization of publications by format type and source of content. A multiple linear regression model was defined using the number of clicks and the reach of posts with an accuracy of up to 91% (R<sup>2</sup>). The User Engagement increases preferably when it is presented in photo format of an original content creation.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Regression Model for Analysis of User Engagement on Facebook Fan Page for Scientific Dissemination Content\",\"authors\":\"P. Velazquez-Solis, J. E. Ibarra-Esquer, M. Astorga-Vargas, B. L. Flores-Rios, M. Carrillo-Beltrán, I. A. García Pacheco\",\"doi\":\"10.1134/s036176882308025x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>User Engagement is a metric that represents a part of the user experience characterized by attributes of reactions, visibility and user interactivity with others. Statistical analysis methods and qualitative analysis were used to establish a new method for calculating User Engagement in Facebook fan pages focused in dissemination of scientific information. We focused on social media processes based on Spearman correlation coefficients and categorization of publications by format type and source of content. A multiple linear regression model was defined using the number of clicks and the reach of posts with an accuracy of up to 91% (R<sup>2</sup>). The User Engagement increases preferably when it is presented in photo format of an original content creation.</p>\",\"PeriodicalId\":54555,\"journal\":{\"name\":\"Programming and Computer Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming and Computer Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s036176882308025x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s036176882308025x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 用户参与度是用户体验的一个指标,其特点是反应、可见性和用户与他人的互动性。我们利用统计分析方法和定性分析建立了一种新方法,用于计算以传播科学信息为主的 Facebook 粉丝页面的用户参与度。我们根据斯皮尔曼相关系数和按格式类型和内容来源对出版物进行的分类,重点研究了社交媒体过程。我们利用帖子的点击数和覆盖率建立了多元线性回归模型,准确率高达 91%(R2)。当原创内容以图片形式呈现时,用户参与度会更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Regression Model for Analysis of User Engagement on Facebook Fan Page for Scientific Dissemination Content

Abstract

User Engagement is a metric that represents a part of the user experience characterized by attributes of reactions, visibility and user interactivity with others. Statistical analysis methods and qualitative analysis were used to establish a new method for calculating User Engagement in Facebook fan pages focused in dissemination of scientific information. We focused on social media processes based on Spearman correlation coefficients and categorization of publications by format type and source of content. A multiple linear regression model was defined using the number of clicks and the reach of posts with an accuracy of up to 91% (R2). The User Engagement increases preferably when it is presented in photo format of an original content creation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Programming and Computer Software
Programming and Computer Software 工程技术-计算机:软件工程
CiteScore
1.60
自引率
28.60%
发文量
35
审稿时长
>12 weeks
期刊介绍: Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.
期刊最新文献
Comparative Efficiency Analysis of Hashing Algorithms for Use in zk-SNARK Circuits in Distributed Ledgers Constructing the Internal Voronoi Diagram of Polygonal Figure Using the Sweepline Method RuGECToR: Rule-Based Neural Network Model for Russian Language Grammatical Error Correction Secure Messaging Application Development: Based on Post-Quantum Algorithms CSIDH, Falcon, and AES Symmetric Key Cryptosystem Analytical Review of Confidential Artificial Intelligence: Methods and Algorithms for Deployment in Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1