{"title":"库尼塔 SDE 的最可能流量","authors":"Erlend Grong, Stefan Sommer","doi":"10.1007/s00245-024-10110-z","DOIUrl":null,"url":null,"abstract":"<div><p>We identify most probable flows for Kunita Brownian motions, i.e. stochastic flows with Eulerian noise and deterministic drifts. Such stochastic processes appear for example in fluid dynamics and shape analysis modelling coarse scale deterministic dynamics together with fine-grained noise. We treat this infinite dimensional problem by equipping the underlying domain with a Riemannian metric originating from the noise. The resulting most probable flows are compared with the non-perturbed deterministic flow, both analytically and experimentally by integrating the equations with various choice of noise structures.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00245-024-10110-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Most Probable Flows for Kunita SDEs\",\"authors\":\"Erlend Grong, Stefan Sommer\",\"doi\":\"10.1007/s00245-024-10110-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We identify most probable flows for Kunita Brownian motions, i.e. stochastic flows with Eulerian noise and deterministic drifts. Such stochastic processes appear for example in fluid dynamics and shape analysis modelling coarse scale deterministic dynamics together with fine-grained noise. We treat this infinite dimensional problem by equipping the underlying domain with a Riemannian metric originating from the noise. The resulting most probable flows are compared with the non-perturbed deterministic flow, both analytically and experimentally by integrating the equations with various choice of noise structures.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00245-024-10110-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10110-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10110-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We identify most probable flows for Kunita Brownian motions, i.e. stochastic flows with Eulerian noise and deterministic drifts. Such stochastic processes appear for example in fluid dynamics and shape analysis modelling coarse scale deterministic dynamics together with fine-grained noise. We treat this infinite dimensional problem by equipping the underlying domain with a Riemannian metric originating from the noise. The resulting most probable flows are compared with the non-perturbed deterministic flow, both analytically and experimentally by integrating the equations with various choice of noise structures.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.