{"title":"用于发电厂热力学建模的固体氧化物燃料电池的特性","authors":"A. Z. Zhuk, P. P. Ivanov","doi":"10.1134/s0018151x23050206","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The thermodynamic characteristics of the electrochemical process in a solid oxide fuel cell (SOFC) are determined using a physical model that takes into account the internal reforming of methane. These characteristics can be a useful tool for studying the thermodynamic cycles of power plants without calculating the physical processes in the fuel cell. The initial data when using them are the load factor and the specific surface resistance of the membrane-electrode assembly.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of a Solid Oxide Fuel Cell for the Thermodynamic Modeling of Power Plants\",\"authors\":\"A. Z. Zhuk, P. P. Ivanov\",\"doi\":\"10.1134/s0018151x23050206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The thermodynamic characteristics of the electrochemical process in a solid oxide fuel cell (SOFC) are determined using a physical model that takes into account the internal reforming of methane. These characteristics can be a useful tool for studying the thermodynamic cycles of power plants without calculating the physical processes in the fuel cell. The initial data when using them are the load factor and the specific surface resistance of the membrane-electrode assembly.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23050206\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23050206","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Characteristics of a Solid Oxide Fuel Cell for the Thermodynamic Modeling of Power Plants
Abstract
The thermodynamic characteristics of the electrochemical process in a solid oxide fuel cell (SOFC) are determined using a physical model that takes into account the internal reforming of methane. These characteristics can be a useful tool for studying the thermodynamic cycles of power plants without calculating the physical processes in the fuel cell. The initial data when using them are the load factor and the specific surface resistance of the membrane-electrode assembly.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.