从大量 RNA 数据集中选择特征的多域多任务方法

Karim Salta, Tomojit Ghosh, Michael Kirby
{"title":"从大量 RNA 数据集中选择特征的多域多任务方法","authors":"Karim Salta, Tomojit Ghosh, Michael Kirby","doi":"arxiv-2405.02534","DOIUrl":null,"url":null,"abstract":"In this paper a multi-domain multi-task algorithm for feature selection in\nbulk RNAseq data is proposed. Two datasets are investigated arising from mouse\nhost immune response to Salmonella infection. Data is collected from several\nstrains of collaborative cross mice. Samples from the spleen and liver serve as\nthe two domains. Several machine learning experiments are conducted and the\nsmall subset of discriminative across domains features have been extracted in\neach case. The algorithm proves viable and underlines the benefits of across\ndomain feature selection by extracting new subset of discriminative features\nwhich couldn't be extracted only by one-domain approach.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Domain Multi-Task Approach for Feature Selection from Bulk RNA Datasets\",\"authors\":\"Karim Salta, Tomojit Ghosh, Michael Kirby\",\"doi\":\"arxiv-2405.02534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a multi-domain multi-task algorithm for feature selection in\\nbulk RNAseq data is proposed. Two datasets are investigated arising from mouse\\nhost immune response to Salmonella infection. Data is collected from several\\nstrains of collaborative cross mice. Samples from the spleen and liver serve as\\nthe two domains. Several machine learning experiments are conducted and the\\nsmall subset of discriminative across domains features have been extracted in\\neach case. The algorithm proves viable and underlines the benefits of across\\ndomain feature selection by extracting new subset of discriminative features\\nwhich couldn't be extracted only by one-domain approach.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在大容量 RNAseq 数据中进行特征选择的多域多任务算法。本文研究了小鼠宿主对沙门氏菌感染的免疫反应所产生的两个数据集。数据采集自多个品系的协作杂交小鼠。脾脏和肝脏样本是两个领域。研究人员进行了多次机器学习实验,并提取了每个案例中具有跨域判别能力的特征子集。该算法证明是可行的,并通过提取单域方法无法提取的新的鉴别特征子集,强调了跨域特征选择的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Domain Multi-Task Approach for Feature Selection from Bulk RNA Datasets
In this paper a multi-domain multi-task algorithm for feature selection in bulk RNAseq data is proposed. Two datasets are investigated arising from mouse host immune response to Salmonella infection. Data is collected from several strains of collaborative cross mice. Samples from the spleen and liver serve as the two domains. Several machine learning experiments are conducted and the small subset of discriminative across domains features have been extracted in each case. The algorithm proves viable and underlines the benefits of across domain feature selection by extracting new subset of discriminative features which couldn't be extracted only by one-domain approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1