{"title":"使用改性氧化石墨烯与两种不同聚合物刷增强碳纤维增强环氧树脂或聚丙烯复合材料的界面性能","authors":"Haifeng Cui, Qing Zhang, Huihuang Ma, Xiaodong Zhou","doi":"10.1007/s13726-024-01309-6","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fibers (CFs) can usually only be used to reinforce polar (or non-polar) resins, and if they are to be used for reinforcing with another polymer type, they need to be surface-modified, which will inevitably damage the surface of the carbon fibers and thus reduces the overall performance of the composite. In this work, graphene oxide was first prepared and modified, and then two polymer brushes, polystyrene (PS) and hydroxypropyl polyacrylate (PHPA) were grafted onto its surface in a one-step process. This approach reduced the damage caused to the CFs surface by multiple treatments and improved the interfacial adhesion between CFs and different resin matrices. An electrophoretic deposition method was used to deposit the modified GO on the surface of CFs, which can form strong interaction between CFs and a variety of resins. The results showed that different molecular chains have been grafted on the surface of GO, and then the latter was uniformly deposited on the surface of CFs, improving their surface toughness. Additionally, when the suspension concentration was only 1 mg/mL, the interfacial shear strength (IFSS) of CF/epoxy and CF/PP increased by 52.0% and 26.5%, respectively. This means that a small amount of GO can significantly improve the interfacial properties of carbon fiber reinforced composites (CFRCs). Therefore, they can be applied to aerospace, wind energy and other industries to effectively improve the interfacial bonding between fiber and resin, after surface modification.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1143 - 1156"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced interfacial properties of carbon fibers reinforced epoxy or PP composites using modified graphene oxide with two different polymer brushes\",\"authors\":\"Haifeng Cui, Qing Zhang, Huihuang Ma, Xiaodong Zhou\",\"doi\":\"10.1007/s13726-024-01309-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon fibers (CFs) can usually only be used to reinforce polar (or non-polar) resins, and if they are to be used for reinforcing with another polymer type, they need to be surface-modified, which will inevitably damage the surface of the carbon fibers and thus reduces the overall performance of the composite. In this work, graphene oxide was first prepared and modified, and then two polymer brushes, polystyrene (PS) and hydroxypropyl polyacrylate (PHPA) were grafted onto its surface in a one-step process. This approach reduced the damage caused to the CFs surface by multiple treatments and improved the interfacial adhesion between CFs and different resin matrices. An electrophoretic deposition method was used to deposit the modified GO on the surface of CFs, which can form strong interaction between CFs and a variety of resins. The results showed that different molecular chains have been grafted on the surface of GO, and then the latter was uniformly deposited on the surface of CFs, improving their surface toughness. Additionally, when the suspension concentration was only 1 mg/mL, the interfacial shear strength (IFSS) of CF/epoxy and CF/PP increased by 52.0% and 26.5%, respectively. This means that a small amount of GO can significantly improve the interfacial properties of carbon fiber reinforced composites (CFRCs). Therefore, they can be applied to aerospace, wind energy and other industries to effectively improve the interfacial bonding between fiber and resin, after surface modification.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"33 8\",\"pages\":\"1143 - 1156\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01309-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01309-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhanced interfacial properties of carbon fibers reinforced epoxy or PP composites using modified graphene oxide with two different polymer brushes
Carbon fibers (CFs) can usually only be used to reinforce polar (or non-polar) resins, and if they are to be used for reinforcing with another polymer type, they need to be surface-modified, which will inevitably damage the surface of the carbon fibers and thus reduces the overall performance of the composite. In this work, graphene oxide was first prepared and modified, and then two polymer brushes, polystyrene (PS) and hydroxypropyl polyacrylate (PHPA) were grafted onto its surface in a one-step process. This approach reduced the damage caused to the CFs surface by multiple treatments and improved the interfacial adhesion between CFs and different resin matrices. An electrophoretic deposition method was used to deposit the modified GO on the surface of CFs, which can form strong interaction between CFs and a variety of resins. The results showed that different molecular chains have been grafted on the surface of GO, and then the latter was uniformly deposited on the surface of CFs, improving their surface toughness. Additionally, when the suspension concentration was only 1 mg/mL, the interfacial shear strength (IFSS) of CF/epoxy and CF/PP increased by 52.0% and 26.5%, respectively. This means that a small amount of GO can significantly improve the interfacial properties of carbon fiber reinforced composites (CFRCs). Therefore, they can be applied to aerospace, wind energy and other industries to effectively improve the interfacial bonding between fiber and resin, after surface modification.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.