使用改性氧化石墨烯与两种不同聚合物刷增强碳纤维增强环氧树脂或聚丙烯复合材料的界面性能

IF 2.4 3区 化学 Q3 POLYMER SCIENCE Iranian Polymer Journal Pub Date : 2024-05-03 DOI:10.1007/s13726-024-01309-6
Haifeng Cui, Qing Zhang, Huihuang Ma, Xiaodong Zhou
{"title":"使用改性氧化石墨烯与两种不同聚合物刷增强碳纤维增强环氧树脂或聚丙烯复合材料的界面性能","authors":"Haifeng Cui,&nbsp;Qing Zhang,&nbsp;Huihuang Ma,&nbsp;Xiaodong Zhou","doi":"10.1007/s13726-024-01309-6","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fibers (CFs) can usually only be used to reinforce polar (or non-polar) resins, and if they are to be used for reinforcing with another polymer type, they need to be surface-modified, which will inevitably damage the surface of the carbon fibers and thus reduces the overall performance of the composite. In this work, graphene oxide was first prepared and modified, and then two polymer brushes, polystyrene (PS) and hydroxypropyl polyacrylate (PHPA) were grafted onto its surface in a one-step process. This approach reduced the damage caused to the CFs surface by multiple treatments and improved the interfacial adhesion between CFs and different resin matrices. An electrophoretic deposition method was used to deposit the modified GO on the surface of CFs, which can form strong interaction between CFs and a variety of resins. The results showed that different molecular chains have been grafted on the surface of GO, and then the latter was uniformly deposited on the surface of CFs, improving their surface toughness. Additionally, when the suspension concentration was only 1 mg/mL, the interfacial shear strength (IFSS) of CF/epoxy and CF/PP increased by 52.0% and 26.5%, respectively. This means that a small amount of GO can significantly improve the interfacial properties of carbon fiber reinforced composites (CFRCs). Therefore, they can be applied to aerospace, wind energy and other industries to effectively improve the interfacial bonding between fiber and resin, after surface modification.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1143 - 1156"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced interfacial properties of carbon fibers reinforced epoxy or PP composites using modified graphene oxide with two different polymer brushes\",\"authors\":\"Haifeng Cui,&nbsp;Qing Zhang,&nbsp;Huihuang Ma,&nbsp;Xiaodong Zhou\",\"doi\":\"10.1007/s13726-024-01309-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon fibers (CFs) can usually only be used to reinforce polar (or non-polar) resins, and if they are to be used for reinforcing with another polymer type, they need to be surface-modified, which will inevitably damage the surface of the carbon fibers and thus reduces the overall performance of the composite. In this work, graphene oxide was first prepared and modified, and then two polymer brushes, polystyrene (PS) and hydroxypropyl polyacrylate (PHPA) were grafted onto its surface in a one-step process. This approach reduced the damage caused to the CFs surface by multiple treatments and improved the interfacial adhesion between CFs and different resin matrices. An electrophoretic deposition method was used to deposit the modified GO on the surface of CFs, which can form strong interaction between CFs and a variety of resins. The results showed that different molecular chains have been grafted on the surface of GO, and then the latter was uniformly deposited on the surface of CFs, improving their surface toughness. Additionally, when the suspension concentration was only 1 mg/mL, the interfacial shear strength (IFSS) of CF/epoxy and CF/PP increased by 52.0% and 26.5%, respectively. This means that a small amount of GO can significantly improve the interfacial properties of carbon fiber reinforced composites (CFRCs). Therefore, they can be applied to aerospace, wind energy and other industries to effectively improve the interfacial bonding between fiber and resin, after surface modification.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"33 8\",\"pages\":\"1143 - 1156\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01309-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01309-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维(CF)通常只能用于增强极性(或非极性)树脂,如果要用于增强其他类型的聚合物,则需要对其进行表面改性,这将不可避免地损坏碳纤维的表面,从而降低复合材料的整体性能。在这项工作中,首先制备并改性了氧化石墨烯,然后一步法将聚苯乙烯(PS)和聚丙烯酸羟丙酯(PHPA)两种聚合物刷接枝到氧化石墨烯表面。这种方法减少了多次处理对 CF 表面造成的损害,并改善了 CF 与不同树脂基质之间的界面粘附性。采用电泳沉积法在 CF 表面沉积改性 GO,可使 CF 与多种树脂之间形成较强的相互作用。结果表明,GO 表面接枝了不同的分子链,然后将后者均匀地沉积在 CFs 表面,从而提高了 CFs 的表面韧性。此外,当悬浮液浓度仅为 1 毫克/毫升时,CF/环氧树脂和 CF/PP 的界面剪切强度(IFSS)分别提高了 52.0% 和 26.5%。这说明,少量的 GO 就能显著改善碳纤维增强复合材料(CFRC)的界面性能。因此,它们可以应用于航空航天、风能等行业,在表面改性后有效改善纤维与树脂之间的界面粘结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced interfacial properties of carbon fibers reinforced epoxy or PP composites using modified graphene oxide with two different polymer brushes

Carbon fibers (CFs) can usually only be used to reinforce polar (or non-polar) resins, and if they are to be used for reinforcing with another polymer type, they need to be surface-modified, which will inevitably damage the surface of the carbon fibers and thus reduces the overall performance of the composite. In this work, graphene oxide was first prepared and modified, and then two polymer brushes, polystyrene (PS) and hydroxypropyl polyacrylate (PHPA) were grafted onto its surface in a one-step process. This approach reduced the damage caused to the CFs surface by multiple treatments and improved the interfacial adhesion between CFs and different resin matrices. An electrophoretic deposition method was used to deposit the modified GO on the surface of CFs, which can form strong interaction between CFs and a variety of resins. The results showed that different molecular chains have been grafted on the surface of GO, and then the latter was uniformly deposited on the surface of CFs, improving their surface toughness. Additionally, when the suspension concentration was only 1 mg/mL, the interfacial shear strength (IFSS) of CF/epoxy and CF/PP increased by 52.0% and 26.5%, respectively. This means that a small amount of GO can significantly improve the interfacial properties of carbon fiber reinforced composites (CFRCs). Therefore, they can be applied to aerospace, wind energy and other industries to effectively improve the interfacial bonding between fiber and resin, after surface modification.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Polymer Journal
Iranian Polymer Journal 化学-高分子科学
CiteScore
4.90
自引率
9.70%
发文量
107
审稿时长
2.8 months
期刊介绍: Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.
期刊最新文献
Pronouncedly elevated impact toughness of isotactic polypropylene upon annealing realized by introducing alkyl-terminated hyperbranched polyester Rice husk/glass fiber-reinforced poly(lactic acid) hybrid composites: rheological and dynamic mechanical study Optimizing drilling parameters for unidirectional glass fiber/nanoclay-epoxy matrix composites using gray relational analysis and response surface methodology Physio-mechanical and thermal characteristics of Mimosa pudica microfibers impregnated novel PLA biocomposite Biodegradable, biocompatible, and self-healing, injectable hydrogel based on oxidized Azadirachta indica gum and carboxymethyl chitosan through dynamic imine-linkage for biomedical application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1