通过 FT-IR 和 FE-SEM 分析观察褶皱假单胞菌 SYp2123 对低密度聚乙烯的高效生物降解作用

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioprocess Engineering Pub Date : 2024-05-06 DOI:10.1007/s12257-024-00108-3
Ye-Jin Kim, Yeon-Hwa Kim, Ye-Rim Shin, Su-Yeong Choi, Jeong-Ann Park, Hyun-Ouk Kim, Kwang Suk Lim, Suk-Jin Ha
{"title":"通过 FT-IR 和 FE-SEM 分析观察褶皱假单胞菌 SYp2123 对低密度聚乙烯的高效生物降解作用","authors":"Ye-Jin Kim, Yeon-Hwa Kim, Ye-Rim Shin, Su-Yeong Choi, Jeong-Ann Park, Hyun-Ouk Kim, Kwang Suk Lim, Suk-Jin Ha","doi":"10.1007/s12257-024-00108-3","DOIUrl":null,"url":null,"abstract":"<p>Plastics have been consistently produced for their practicality and convenience; however, unmanaged plastics often end up in the ocean and decompose into nano-plastics through photolytic decomposition and weathering, negatively affecting marine life. This can eventually affect humans via the food chain, highlighting the need for effective solutions. Microbial biodegradation has been proposed as a solution to minimize the impact of nano-plastics on the environment, and degradation byproducts can be used in microbial metabolic pathways. In this study, 57 bacterial strains were isolated and identified from a waste treatment facility. Bacterial strains with lipase activity were selected on Tween80 agar plates. Additionally, strains capable of growing on minimal salt agar plates supplemented with low-density polyethylene (LDPE) beads were selected. Incubation in a minimal salt medium with LDPE beads as the sole carbon source led to the selection of <i>Pseudomonas plecoglossicida</i> SYp2123, which is capable of degrading LDPE. This strain was subjected to high cell density culture, and Fourier-transform infrared spectroscopy revealed chemical changes on the surface of LDPE beads. Additionally, field-emission scanning electron microscopy confirmed substantial biodegradation of the surface. <i>P. plecoglossicida</i> SYp2123 was able to degrade LDPE beads. This discovery shows that <i>P. plecoglossicida</i> can potentially be used as an environmentally friendly approach for tackling issues associated with polyethylene waste. </p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient biodegradation of low-density polyethylene by Pseudomonas plecoglossicida SYp2123 was observed through FT-IR and FE-SEM analysis\",\"authors\":\"Ye-Jin Kim, Yeon-Hwa Kim, Ye-Rim Shin, Su-Yeong Choi, Jeong-Ann Park, Hyun-Ouk Kim, Kwang Suk Lim, Suk-Jin Ha\",\"doi\":\"10.1007/s12257-024-00108-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plastics have been consistently produced for their practicality and convenience; however, unmanaged plastics often end up in the ocean and decompose into nano-plastics through photolytic decomposition and weathering, negatively affecting marine life. This can eventually affect humans via the food chain, highlighting the need for effective solutions. Microbial biodegradation has been proposed as a solution to minimize the impact of nano-plastics on the environment, and degradation byproducts can be used in microbial metabolic pathways. In this study, 57 bacterial strains were isolated and identified from a waste treatment facility. Bacterial strains with lipase activity were selected on Tween80 agar plates. Additionally, strains capable of growing on minimal salt agar plates supplemented with low-density polyethylene (LDPE) beads were selected. Incubation in a minimal salt medium with LDPE beads as the sole carbon source led to the selection of <i>Pseudomonas plecoglossicida</i> SYp2123, which is capable of degrading LDPE. This strain was subjected to high cell density culture, and Fourier-transform infrared spectroscopy revealed chemical changes on the surface of LDPE beads. Additionally, field-emission scanning electron microscopy confirmed substantial biodegradation of the surface. <i>P. plecoglossicida</i> SYp2123 was able to degrade LDPE beads. This discovery shows that <i>P. plecoglossicida</i> can potentially be used as an environmentally friendly approach for tackling issues associated with polyethylene waste. </p>\",\"PeriodicalId\":8936,\"journal\":{\"name\":\"Biotechnology and Bioprocess Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioprocess Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12257-024-00108-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00108-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

塑料因其实用性和便利性而不断被生产出来;然而,未经管理的塑料往往最终会进入海洋,并通过光解分解和风化作用分解成纳米塑料,从而对海洋生物造成负面影响。这最终会通过食物链影响人类,因此需要有效的解决方案。微生物生物降解被认为是将纳米塑料对环境的影响降至最低的一种解决方案,降解副产物可用于微生物代谢途径。本研究从一个废物处理设施中分离并鉴定了 57 种细菌菌株。在 Tween80 琼脂平板上筛选出具有脂肪酶活性的细菌菌株。此外,还挑选了能够在添加了低密度聚乙烯(LDPE)珠的最小盐琼脂平板上生长的菌株。在以低密度聚乙烯珠为唯一碳源的微盐培养基中培养,筛选出了能降解低密度聚乙烯的褶皱假单胞菌 SYp2123。对该菌株进行了高细胞密度培养,傅立叶变换红外光谱显示了低密度聚乙烯珠表面的化学变化。此外,场发射扫描电子显微镜也证实了表面的实质性生物降解。P. plecoglossicida SYp2123能够降解低密度聚乙烯珠。这一发现表明,P. plecoglossicida 有可能被用作解决聚乙烯废物相关问题的一种环保方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient biodegradation of low-density polyethylene by Pseudomonas plecoglossicida SYp2123 was observed through FT-IR and FE-SEM analysis

Plastics have been consistently produced for their practicality and convenience; however, unmanaged plastics often end up in the ocean and decompose into nano-plastics through photolytic decomposition and weathering, negatively affecting marine life. This can eventually affect humans via the food chain, highlighting the need for effective solutions. Microbial biodegradation has been proposed as a solution to minimize the impact of nano-plastics on the environment, and degradation byproducts can be used in microbial metabolic pathways. In this study, 57 bacterial strains were isolated and identified from a waste treatment facility. Bacterial strains with lipase activity were selected on Tween80 agar plates. Additionally, strains capable of growing on minimal salt agar plates supplemented with low-density polyethylene (LDPE) beads were selected. Incubation in a minimal salt medium with LDPE beads as the sole carbon source led to the selection of Pseudomonas plecoglossicida SYp2123, which is capable of degrading LDPE. This strain was subjected to high cell density culture, and Fourier-transform infrared spectroscopy revealed chemical changes on the surface of LDPE beads. Additionally, field-emission scanning electron microscopy confirmed substantial biodegradation of the surface. P. plecoglossicida SYp2123 was able to degrade LDPE beads. This discovery shows that P. plecoglossicida can potentially be used as an environmentally friendly approach for tackling issues associated with polyethylene waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioprocess Engineering
Biotechnology and Bioprocess Engineering 工程技术-生物工程与应用微生物
CiteScore
5.00
自引率
12.50%
发文量
79
审稿时长
3 months
期刊介绍: Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.
期刊最新文献
Assessing the applicability of tunicate skin-extracted cellulose as a base material for ultrasound gel Fabrication of protein–inorganic biohybrid as an imageable drug delivery system comprising transferrin, green fluorescent protein, and copper phosphate Continuous cell recycling in methylotrophic yeast Pichia pastoris to enhance product yields: a case study with Yarrowia lipolytica lipase Lip2 Sensitive detection of SARS-CoV2 spike antibodies by a paper-based polypyrrole/reduced graphene oxide sensor A neural ordinary differential equation model for predicting the growth of Chinese Hamster Ovary cell in a bioreactor system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1