基于氢氧化钾改性纤维素的面层建筑材料

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, CERAMICS Glass and Ceramics Pub Date : 2024-05-04 DOI:10.1007/s10717-024-00642-9
V. S. Bessmertnyi, N. M. Zdorenko, M. A. Bondarenko, A. V. Makarov, S. V. Varfolomeeva, V. M. Vorontsov, A. V. Cherkasov
{"title":"基于氢氧化钾改性纤维素的面层建筑材料","authors":"V. S. Bessmertnyi,&nbsp;N. M. Zdorenko,&nbsp;M. A. Bondarenko,&nbsp;A. V. Makarov,&nbsp;S. V. Varfolomeeva,&nbsp;V. M. Vorontsov,&nbsp;A. V. Cherkasov","doi":"10.1007/s10717-024-00642-9","DOIUrl":null,"url":null,"abstract":"<p>A technology for facing material based on mechanically activated cullet modified with potassium hydroxide was developed. The phase composition, macro- and microstructure of the facing material were studied. It was found that the structure of the composite modified with potassium hydroxide is represented in the interpore space by needle-shaped and columnar crystals of potassium silicates. Physicomechanical characteristics of facing material were investigated.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"508 - 512"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facing Building Material Based on Potassium-Hydroxide Modified Cullet\",\"authors\":\"V. S. Bessmertnyi,&nbsp;N. M. Zdorenko,&nbsp;M. A. Bondarenko,&nbsp;A. V. Makarov,&nbsp;S. V. Varfolomeeva,&nbsp;V. M. Vorontsov,&nbsp;A. V. Cherkasov\",\"doi\":\"10.1007/s10717-024-00642-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A technology for facing material based on mechanically activated cullet modified with potassium hydroxide was developed. The phase composition, macro- and microstructure of the facing material were studied. It was found that the structure of the composite modified with potassium hydroxide is represented in the interpore space by needle-shaped and columnar crystals of potassium silicates. Physicomechanical characteristics of facing material were investigated.</p>\",\"PeriodicalId\":579,\"journal\":{\"name\":\"Glass and Ceramics\",\"volume\":\"80 11-12\",\"pages\":\"508 - 512\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass and Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10717-024-00642-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass and Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10717-024-00642-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

开发了一种基于氢氧化钾改性的机械活化陶粒的面层材料技术。研究了面层材料的相组成、宏观和微观结构。研究发现,用氢氧化钾改性的复合材料的结构在孔隙间隙中表现为硅酸钾的针状和柱状晶体。研究了面层材料的物理机械特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facing Building Material Based on Potassium-Hydroxide Modified Cullet

A technology for facing material based on mechanically activated cullet modified with potassium hydroxide was developed. The phase composition, macro- and microstructure of the facing material were studied. It was found that the structure of the composite modified with potassium hydroxide is represented in the interpore space by needle-shaped and columnar crystals of potassium silicates. Physicomechanical characteristics of facing material were investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glass and Ceramics
Glass and Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.00
自引率
16.70%
发文量
85
审稿时长
6-12 weeks
期刊介绍: Glass and Ceramics reports on advances in basic and applied research and plant production techniques in glass and ceramics. The journal''s broad coverage includes developments in the areas of silicate chemistry, mineralogy and metallurgy, crystal chemistry, solid state reactions, raw materials, phase equilibria, reaction kinetics, physicochemical analysis, physics of dielectrics, and refractories, among others.
期刊最新文献
Investigation of Luminescent Properties of Optical Ceramics Based on YAG and Luag Co-Activated by Yb3+ and Er3+ Structural Features and Properties of Sodium-Rubidium Aluminoborosilicate Glasses with Zirconium Granular Chemisorbent Based on Zinc Oxide Supported on γ – AI2O3 Study of the Possibility of a Stable Increase in the Electron Beam Current Density Using a Tapered Glass Channel Influence of the Addition of Boiler Slag from the Novocherkassk SDPP on the Properties of Aluminosilicate Materials Based on Drill Cuttings from the Vostochno-Chumakovskoye Oil Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1