受空气冲击的曲面聚合物三明治复合材料:实验研究

IF 2 3区 工程技术 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Experimental Mechanics Pub Date : 2024-05-02 DOI:10.1007/s11340-024-01069-7
A. Pandey, P. Wanchoo, H. Matos, A. Shukla
{"title":"受空气冲击的曲面聚合物三明治复合材料:实验研究","authors":"A. Pandey,&nbsp;P. Wanchoo,&nbsp;H. Matos,&nbsp;A. Shukla","doi":"10.1007/s11340-024-01069-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The vulnerability of polymeric composite sandwich structures in marine applications to air explosions highlights a significant gap in our understanding of the dynamic behavior of the curved sandwich structures, which is essential for design improvements.</p><h3>Objective</h3><p>This study aims to explore the dynamic response and failure mechanisms of curved sandwich composite panels subjected to air-blast loading, providing insights into their structural integrity under such conditions.</p><h3>Methods</h3><p>Experiments were performed using laboratory-simulated air shocks generated by a shock tube, employing high-speed photography and digital image correlation to measure deflections on the back surface of the panels. The panels, made with PVC closed-cell foam cores of two densities (H45 and H130), were tested across three curved geometries (radii of 112 mm, 305 mm, and infinity) under various boundary conditions.</p><h3>Results</h3><p>Findings indicate an increase in deformation with a decreased radius of curvature under simple support conditions, a trend that reverses under arrested displacement conditions. Moreover, a reduced radius significantly enhances panel strength and resistance to interfacial damage, with the primary failure mode transitioning from core shear cracking to interfacial debonding as core density increases.</p><h3>Conclusions</h3><p>The study reveals that the radius of curvature, boundary conditions, and core density significantly affect curved sandwich panels’ dynamic response and performance. Panels with smaller radii and higher core densities exhibit increased strength, though boundary conditions introduce variable effects on deformation behavior.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"945 - 961"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01069-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Curved Polymeric Sandwich Composites Subjected to Air Shock: An Experimental Investigation\",\"authors\":\"A. Pandey,&nbsp;P. Wanchoo,&nbsp;H. Matos,&nbsp;A. Shukla\",\"doi\":\"10.1007/s11340-024-01069-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The vulnerability of polymeric composite sandwich structures in marine applications to air explosions highlights a significant gap in our understanding of the dynamic behavior of the curved sandwich structures, which is essential for design improvements.</p><h3>Objective</h3><p>This study aims to explore the dynamic response and failure mechanisms of curved sandwich composite panels subjected to air-blast loading, providing insights into their structural integrity under such conditions.</p><h3>Methods</h3><p>Experiments were performed using laboratory-simulated air shocks generated by a shock tube, employing high-speed photography and digital image correlation to measure deflections on the back surface of the panels. The panels, made with PVC closed-cell foam cores of two densities (H45 and H130), were tested across three curved geometries (radii of 112 mm, 305 mm, and infinity) under various boundary conditions.</p><h3>Results</h3><p>Findings indicate an increase in deformation with a decreased radius of curvature under simple support conditions, a trend that reverses under arrested displacement conditions. Moreover, a reduced radius significantly enhances panel strength and resistance to interfacial damage, with the primary failure mode transitioning from core shear cracking to interfacial debonding as core density increases.</p><h3>Conclusions</h3><p>The study reveals that the radius of curvature, boundary conditions, and core density significantly affect curved sandwich panels’ dynamic response and performance. Panels with smaller radii and higher core densities exhibit increased strength, though boundary conditions introduce variable effects on deformation behavior.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"64 6\",\"pages\":\"945 - 961\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11340-024-01069-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-024-01069-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01069-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

背景海洋应用中的聚合物复合材料夹层结构易受气爆影响,这凸显出我们对曲面夹层结构动态行为的理解存在重大差距,而这对改进设计至关重要。方法使用冲击管产生的实验室模拟气爆冲击进行实验,采用高速摄影和数字图像相关技术测量面板背面的挠度。在各种边界条件下,对使用两种密度(H45 和 H130)的聚氯乙烯闭孔泡沫芯材制成的面板进行了三种弯曲几何形状(半径分别为 112 毫米、305 毫米和无限大)的测试。结果研究结果表明,在简单支撑条件下,随着曲率半径的减小,变形量也会增加,而在受阻位移条件下,这种趋势会发生逆转。此外,随着夹芯密度的增加,主要失效模式从夹芯剪切开裂过渡到界面脱粘,曲率半径减小可显著增强面板强度和抗界面破坏能力。半径较小和夹芯密度较高的板材强度更高,但边界条件对变形行为的影响各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Curved Polymeric Sandwich Composites Subjected to Air Shock: An Experimental Investigation

Background

The vulnerability of polymeric composite sandwich structures in marine applications to air explosions highlights a significant gap in our understanding of the dynamic behavior of the curved sandwich structures, which is essential for design improvements.

Objective

This study aims to explore the dynamic response and failure mechanisms of curved sandwich composite panels subjected to air-blast loading, providing insights into their structural integrity under such conditions.

Methods

Experiments were performed using laboratory-simulated air shocks generated by a shock tube, employing high-speed photography and digital image correlation to measure deflections on the back surface of the panels. The panels, made with PVC closed-cell foam cores of two densities (H45 and H130), were tested across three curved geometries (radii of 112 mm, 305 mm, and infinity) under various boundary conditions.

Results

Findings indicate an increase in deformation with a decreased radius of curvature under simple support conditions, a trend that reverses under arrested displacement conditions. Moreover, a reduced radius significantly enhances panel strength and resistance to interfacial damage, with the primary failure mode transitioning from core shear cracking to interfacial debonding as core density increases.

Conclusions

The study reveals that the radius of curvature, boundary conditions, and core density significantly affect curved sandwich panels’ dynamic response and performance. Panels with smaller radii and higher core densities exhibit increased strength, though boundary conditions introduce variable effects on deformation behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Mechanics
Experimental Mechanics 物理-材料科学:表征与测试
CiteScore
4.40
自引率
16.70%
发文量
111
审稿时长
3 months
期刊介绍: Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome. Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.
期刊最新文献
On the Cover: A Novel Method to In-Situ Characterize Fatigue Crack Growth Behavior of Nickel Based Superalloys by Laser Thermography Editorial: Message from the Incoming Editor-in-Chief Characterization of Environmental Stress Cracking in Polymers Through a Modified Bent Strip Test Method Evolving Properties of Biological Materials Captured via Needle-Based Cavity Expansion Method Study of Thermomechanical Behavior of Refractory Materials Under Thermal Gradient. Part I – Presentation of ATHORNA Device and Experimental Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1