{"title":"通过电子教科书加强对工程数学概念的理解","authors":"Ekaterina Rzyankina;Frikkie George;Zach Simpson","doi":"10.1109/TE.2024.3387102","DOIUrl":null,"url":null,"abstract":"Background: The COVID-19 pandemic and the shift to digital learning materials have dramatically reduced the use of paper-based textbooks in higher education. In the field of engineering, students need a comprehensive understanding of mathematical concepts, which can be achieved through the use of e-textbooks. These digital learning materials can provide a more comprehensive and effective learning experience by incorporating a variety of multimedia elements, such as audio, visual aids, and interactive features. Rationale/Relevance: Mathematics students are expected to possess critical problem-solving skills, yet they are rarely asked to elaborate on and explain their mathematical reasoning and concepts through written argument in the engineering mathematics classroom. While students may excel in formula manipulation, they may still possess misconceptions about mathematical principles and concepts. A reliance on mechanical and procedural approaches, such as formula application, without proper conceptual understanding can result in serious misunderstandings of mathematics and its real-world applications. Without the ability to reason about mathematical concepts, students may struggle to connect what they are learning in class with real-world scenarios, leading to difficulties in solving practical problems. It is, therefore, crucial to foster conceptual understanding and critical reasoning skills in mathematics education, rather than solely relying on memorisation, in order to equip students with the necessary skills to succeed in their careers. Research Problem/ Research Question: This study will answer the following research question:How effective are e-textbooks in promoting conceptual understanding of engineering mathematics? Aim of the Study/Focus: The purpose of this study is to investigate conceptual learning in engineering mathematics using an e-textbook as a learning tool. Methodology: This qualitative case study explores e-textbooks as adaptive technology, with functionalities that include artificial intelligence allowing students to develop their understanding by interacting with digital text, watching videos of real-world mathematics concepts, and responding to quick quizzes on concepts; as well as practising and mastering further mathematical principles and concepts. It focuses on first-year engineering students and lecturers at a University of Technology in South Africa. The analysis of interview recordings was done with ATLAS.ti. analytical software. Theoretical Framework: The data from this study was analyzed through the lenses of cultural historical activity theory (CHAT) and Vosniadou’s notion of conceptual change, allowing the researchers to explain complex real-world situations that students experience when engaging with the e-textbook to solve mathematics problems. Recommendations: The work presented here has implications for future studies of conceptual learning in mathematics research and may provide opportunities around learning engineering mathematical concepts, particularly in the context of developing countries. This is because it offers novel instructional approaches that are tailored to the specific needs and challenges of these countries.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":"67 4","pages":"534-541"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Conceptual Understanding in Engineering Mathematics Through E-Textbooks\",\"authors\":\"Ekaterina Rzyankina;Frikkie George;Zach Simpson\",\"doi\":\"10.1109/TE.2024.3387102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The COVID-19 pandemic and the shift to digital learning materials have dramatically reduced the use of paper-based textbooks in higher education. In the field of engineering, students need a comprehensive understanding of mathematical concepts, which can be achieved through the use of e-textbooks. These digital learning materials can provide a more comprehensive and effective learning experience by incorporating a variety of multimedia elements, such as audio, visual aids, and interactive features. Rationale/Relevance: Mathematics students are expected to possess critical problem-solving skills, yet they are rarely asked to elaborate on and explain their mathematical reasoning and concepts through written argument in the engineering mathematics classroom. While students may excel in formula manipulation, they may still possess misconceptions about mathematical principles and concepts. A reliance on mechanical and procedural approaches, such as formula application, without proper conceptual understanding can result in serious misunderstandings of mathematics and its real-world applications. Without the ability to reason about mathematical concepts, students may struggle to connect what they are learning in class with real-world scenarios, leading to difficulties in solving practical problems. It is, therefore, crucial to foster conceptual understanding and critical reasoning skills in mathematics education, rather than solely relying on memorisation, in order to equip students with the necessary skills to succeed in their careers. Research Problem/ Research Question: This study will answer the following research question:How effective are e-textbooks in promoting conceptual understanding of engineering mathematics? Aim of the Study/Focus: The purpose of this study is to investigate conceptual learning in engineering mathematics using an e-textbook as a learning tool. Methodology: This qualitative case study explores e-textbooks as adaptive technology, with functionalities that include artificial intelligence allowing students to develop their understanding by interacting with digital text, watching videos of real-world mathematics concepts, and responding to quick quizzes on concepts; as well as practising and mastering further mathematical principles and concepts. It focuses on first-year engineering students and lecturers at a University of Technology in South Africa. The analysis of interview recordings was done with ATLAS.ti. analytical software. Theoretical Framework: The data from this study was analyzed through the lenses of cultural historical activity theory (CHAT) and Vosniadou’s notion of conceptual change, allowing the researchers to explain complex real-world situations that students experience when engaging with the e-textbook to solve mathematics problems. Recommendations: The work presented here has implications for future studies of conceptual learning in mathematics research and may provide opportunities around learning engineering mathematical concepts, particularly in the context of developing countries. This is because it offers novel instructional approaches that are tailored to the specific needs and challenges of these countries.\",\"PeriodicalId\":55011,\"journal\":{\"name\":\"IEEE Transactions on Education\",\"volume\":\"67 4\",\"pages\":\"534-541\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10521516/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Education","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10521516/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Enhancing Conceptual Understanding in Engineering Mathematics Through E-Textbooks
Background: The COVID-19 pandemic and the shift to digital learning materials have dramatically reduced the use of paper-based textbooks in higher education. In the field of engineering, students need a comprehensive understanding of mathematical concepts, which can be achieved through the use of e-textbooks. These digital learning materials can provide a more comprehensive and effective learning experience by incorporating a variety of multimedia elements, such as audio, visual aids, and interactive features. Rationale/Relevance: Mathematics students are expected to possess critical problem-solving skills, yet they are rarely asked to elaborate on and explain their mathematical reasoning and concepts through written argument in the engineering mathematics classroom. While students may excel in formula manipulation, they may still possess misconceptions about mathematical principles and concepts. A reliance on mechanical and procedural approaches, such as formula application, without proper conceptual understanding can result in serious misunderstandings of mathematics and its real-world applications. Without the ability to reason about mathematical concepts, students may struggle to connect what they are learning in class with real-world scenarios, leading to difficulties in solving practical problems. It is, therefore, crucial to foster conceptual understanding and critical reasoning skills in mathematics education, rather than solely relying on memorisation, in order to equip students with the necessary skills to succeed in their careers. Research Problem/ Research Question: This study will answer the following research question:How effective are e-textbooks in promoting conceptual understanding of engineering mathematics? Aim of the Study/Focus: The purpose of this study is to investigate conceptual learning in engineering mathematics using an e-textbook as a learning tool. Methodology: This qualitative case study explores e-textbooks as adaptive technology, with functionalities that include artificial intelligence allowing students to develop their understanding by interacting with digital text, watching videos of real-world mathematics concepts, and responding to quick quizzes on concepts; as well as practising and mastering further mathematical principles and concepts. It focuses on first-year engineering students and lecturers at a University of Technology in South Africa. The analysis of interview recordings was done with ATLAS.ti. analytical software. Theoretical Framework: The data from this study was analyzed through the lenses of cultural historical activity theory (CHAT) and Vosniadou’s notion of conceptual change, allowing the researchers to explain complex real-world situations that students experience when engaging with the e-textbook to solve mathematics problems. Recommendations: The work presented here has implications for future studies of conceptual learning in mathematics research and may provide opportunities around learning engineering mathematical concepts, particularly in the context of developing countries. This is because it offers novel instructional approaches that are tailored to the specific needs and challenges of these countries.
期刊介绍:
The IEEE Transactions on Education (ToE) publishes significant and original scholarly contributions to education in electrical and electronics engineering, computer engineering, computer science, and other fields within the scope of interest of IEEE. Contributions must address discovery, integration, and/or application of knowledge in education in these fields. Articles must support contributions and assertions with compelling evidence and provide explicit, transparent descriptions of the processes through which the evidence is collected, analyzed, and interpreted. While characteristics of compelling evidence cannot be described to address every conceivable situation, generally assessment of the work being reported must go beyond student self-report and attitudinal data.